Arithmetic of Mori domains and monoids

被引:23
|
作者
Geroldinger, Alfred [1 ]
Hassler, Wolfgang [1 ]
机构
[1] Karl Franzens Univ Graz, Inst Math & Wissensch Liches Rechen, A-8010 Graz, Austria
基金
奥地利科学基金会;
关键词
Mori domain; upsilon-noetherian monoid; C-monoid; non-unique factorizations; local tameness; catenary degree;
D O I
10.1016/j.jalgebra.2007.11.025
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we introduce weakly C-monoids as a new class of upsilon-noetherian monoids. Weakly C-monoids generalize C-monoids and make it possible to study multiplicative properties of a wide class of Mori domains, e.g., rings of generalized power series with coefficients in a field and exponents in a finitely generated monoid. The main goal of the paper is to study the question when a weakly C-monoid is locally tame. After having proved a classification theorem for local tameness, we use it to Show that every locally tame weakly C-monoid whose complete integral closure has finite class group has finite catenary degree and finite set of distances. (C) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:3419 / 3463
页数:45
相关论文
共 50 条
  • [1] ON THE ARITHMETIC OF MORI MONOIDS AND DOMAINS
    Zhong, Qinghai
    GLASGOW MATHEMATICAL JOURNAL, 2020, 62 (02) : 313 - 322
  • [2] On the arithmetic of tame monoids with applications to Krull monoids and Mori domains
    Geroldinger, Alfred
    Kainrath, Florian
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2010, 214 (12) : 2199 - 2218
  • [3] Arithmetic of Mori Domains and Monoids: The Global Case
    Kainrath, Florian
    MULTIPLICATIVE IDEAL THEORY AND FACTORIZATION THEORY: COMMUTATIVE AND NON-COMMUTATIVE PERSPECTIVES, 2016, 170 : 183 - 218
  • [4] Arithmetic of seminormal weakly Krull monoids and domains
    Geroldinger, Alfred
    Kainrath, Florian
    Reinhart, Andreas
    JOURNAL OF ALGEBRA, 2015, 444 : 201 - 245
  • [5] On the arithmetic of monoids of ideals
    Geroldinger, Alfred
    Khadam, M. Azeem
    ARKIV FOR MATEMATIK, 2022, 60 (01): : 67 - 106
  • [6] ARITHMETIC OF CONGRUENCE MONOIDS
    Fujiwara, Arielle
    Gibson, Joseph
    Jenssen, Matthew O.
    Montealegre, Daniel
    Ponomarenko, Vadim
    Tenzer, Ari
    COMMUNICATIONS IN ALGEBRA, 2016, 44 (08) : 3407 - 3421
  • [7] On the arithmetic of strongly primary monoids
    Geroldinger, Alfred
    Hassler, Wolfgang
    Lettl, Guenter
    SEMIGROUP FORUM, 2007, 75 (03) : 568 - 588
  • [8] On the Arithmetic of Strongly Primary Monoids
    Alfred Geroldinger
    Wolfgang Hassler
    Gunter Lettl
    Semigroup Forum, 2007, 75 : 567 - 587
  • [9] ω-Primality in arithmetic Leamer monoids
    Chapman, Scott T.
    Tripp, Zack
    SEMIGROUP FORUM, 2019, 99 (01) : 47 - 56
  • [10] Monoids over domains
    Mislove, M
    MATHEMATICAL STRUCTURES IN COMPUTER SCIENCE, 2006, 16 (02) : 255 - 277