Noise in bilinear problems

被引:0
|
作者
Haddon, JA [1 ]
Forsyth, DA [1 ]
机构
[1] Univ Calif Berkeley, Div Comp Sci, Berkeley, CA 94720 USA
来源
EIGHTH IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION, VOL II, PROCEEDINGS | 2001年
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Despite the wide application of bilinear problems to problems both in computer vision and in other fields, their behaviour under the effects of noise is still poorly understood. In this paper we show analytically that marginal distributions on the solution components of a bilinear problem can be bimodal, even with Gaussian measurement error We demonstrate and compare three different methods of estimating the covariance of a solution. We show that the Hessian at the mode substantially underestimates covariance.
引用
收藏
页码:622 / 627
页数:6
相关论文
共 50 条
  • [1] Bilinear noise cancellation
    Mio, K
    Moisan, E
    1996 IEEE DIGITAL SIGNAL PROCESSING WORKSHOP, PROCEEDINGS, 1996, : 366 - 369
  • [2] ON IDENTIFIABILITY IN BILINEAR INVERSE PROBLEMS
    Choudhary, Sunav
    Mitra, Urbashi
    2013 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2013, : 4325 - 4329
  • [3] LECTURES ON THE COMPLEXITY OF BILINEAR PROBLEMS
    DEGROOTE, HF
    LECTURE NOTES IN COMPUTER SCIENCE, 1987, 245 : 1 - 135
  • [4] A METHOD OF SOLVING BILINEAR MINIMAX PROBLEMS
    DUISEBAYEV, BD
    USSR COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 1985, 25 (05): : 6 - 13
  • [5] Numerical Solution of Bilinear Programming Problems
    Orlov, A. V.
    COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2008, 48 (02) : 225 - 241
  • [6] Numerical solution of bilinear programming problems
    A. V. Orlov
    Computational Mathematics and Mathematical Physics, 2008, 48 : 225 - 241
  • [7] Identifiability Bounds for Bilinear Inverse Problems
    Choudhary, Sunav
    Mitra, Urbashi
    2013 ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS AND COMPUTERS, 2013, : 1677 - 1681
  • [8] BILINEAR EXTREMAL PROBLEMS IN BANACH SPACES
    Emenyu, John
    JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2022, 23 (05) : 943 - 956
  • [9] On generic groups and related bilinear problems
    Lubicz, David
    Sirvent, Thomas
    Cryptology and Information Security Series, 2009, 2 : 169 - 187
  • [10] Bilinear noise subtraction at the GEO 600 observatory
    Mukund, N.
    Lough, J.
    Affeldt, C.
    Bergamin, F.
    Bisht, A.
    Brinkmann, M.
    Kringel, V
    Lueck, H.
    Nadji, S.
    Weinert, M.
    Danzmann, K.
    PHYSICAL REVIEW D, 2020, 101 (10)