Poisson Model To Generate Isotope Distribution for Biomolecules

被引:14
作者
Sadygov, Rovshan G. [1 ]
机构
[1] Univ Texas Med Branch, Sealy Ctr Mol Med, Dept Biochem & Mol Biol, Galveston, TX 77555 USA
基金
美国国家卫生研究院;
关键词
Poisson distribution; isotope envelope; mass spectrometry; stable isotope labeling; QUANTITATIVE PROTEOMIC ANALYSIS; MASS-SPECTROMETRY; FINE-STRUCTURE; EFFICIENT CALCULATION; FOURIER-TRANSFORM; AMINO-ACIDS; IDENTIFICATION; PEPTIDES; PATTERNS; SPECTRA;
D O I
10.1021/acs.jproteome.7b00807
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
We introduce a simplified computatiohal algorithm for computing isotope distributions (relative abundances and masses) of biomolecules. The algorithm is based on Poisson approximation to binomial and multinomial distributions. It leads to a small number of arithmetic operations to compute isotope distributions of molecules. The approach uses three embedded loops to compute the isotope distributions, as compared with the eight embedded loops in exact calculations. The speed improvement is about 3-fold compared to the fast Fourier transformation-based isotope calculations, often termed as ultrafast isotope calculation. The approach naturally incorporates the determination of the masses of each molecular isotopomer. It is applicable to high mass accuracy and resolution mass spectrometry data. The application to tryptic peptides in a UniProt protein database revealed that the mass accuracy of the computed isotopomers is better than 1 ppm. Even better mass accuracy (below 1 ppm) is achievable when the method is paired with the exact calculations, which we term a hybrid approach. The algorithms have been implemented in a freely available C/C++ code.
引用
收藏
页码:751 / 758
页数:8
相关论文
共 42 条
  • [1] Mass-spectrometric exploration of proteome structure and function
    Aebersold, Ruedi
    Mann, Matthias
    [J]. NATURE, 2016, 537 (7620) : 347 - 355
  • [2] Software LS-MIDA for efficient mass isotopomer distribution analysis in metabolic modelling
    Ahmed, Zeeshan
    Zeeshan, Saman
    Huber, Claudia
    Hensel, Michael
    Schomburg, Dietmar
    Muench, Richard
    Eisenreich, Wolfgang
    Dandekar, Thomas
    [J]. BMC BIOINFORMATICS, 2013, 14
  • [3] ARENBAEV NK, 1976, THEOR PROBAB APPL+, V21, P805
  • [4] The universal protein resource (UniProt)
    Bairoch, A
    Apweiler, R
    Wu, CH
    Barker, WC
    Boeckmann, B
    Ferro, S
    Gasteiger, E
    Huang, HZ
    Lopez, R
    Magrane, M
    Martin, MJ
    Natale, DA
    O'Donovan, C
    Redaschi, N
    Yeh, LSL
    [J]. NUCLEIC ACIDS RESEARCH, 2005, 33 : D154 - D159
  • [5] SIRIUS: decomposing isotope patterns for metabolite identification
    Boecker, Sebastian
    Letzel, Matthias C.
    Liptak, Zsuzsanna
    Pervukhin, Anton
    [J]. BIOINFORMATICS, 2009, 25 (02) : 218 - 224
  • [6] Breen EJ, 2000, ELECTROPHORESIS, V21, P2243, DOI 10.1002/1522-2683(20000601)21:11<2243::AID-ELPS2243>3.0.CO
  • [7] 2-K
  • [8] An Efficient Method to Calculate the Aggregated Isotopic Distribution and Exact Center-Masses
    Claesen, Juergen
    Dittwald, Piotr
    Burzykowski, Tomasz
    Valkenborg, Dirk
    [J]. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY, 2012, 23 (04) : 753 - 763
  • [9] POISSON APPROXIMATIONS OF MULTINOMIAL DISTRIBUTIONS AND POINT-PROCESSES
    DEHEUVELS, P
    PFEIFER, D
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 1988, 25 (01) : 65 - 89
  • [10] Feller W., 1968, INTRO PROBABILITY TH