interpolation;
data-driven models;
neural networks;
variational data assimilation;
missing data;
suspended particulate matter;
observing system experiment;
Bay of Biscay;
CONTINENTAL-SHELF;
COASTAL WATERS;
BAY;
VARIABILITY;
PARTICLES;
TURBIDITY;
MATTER;
D O I:
10.3390/rs14164024
中图分类号:
X [环境科学、安全科学];
学科分类号:
08 ;
0830 ;
摘要:
The characterization of suspended sediment dynamics in the coastal ocean provides key information for both scientific studies and operational challenges regarding, among others, turbidity, water transparency and the development of micro-organisms using photosynthesis, which is critical to primary production. Due to the complex interplay between natural and anthropogenic forcings, the understanding and monitoring of the dynamics of suspended sediments remain highly challenging. Numerical models still lack the capabilities to account for the variability depicted by in situ and satellite-derived datasets. Through the ever increasing availability of both in situ and satellite-derived observation data, data-driven schemes have naturally become relevant approaches to complement model-driven ones. Our previous work has stressed this potential within an observing system simulation experiment. Here, we further explore their application to the interpolation of sea surface sediment concentration fields from real gappy satellite-derived observation datasets. We demonstrate that end-to-end deep learning schemes-namely 4DVarNet, which relies on variational data assimilation formulation-apply to the considered real dataset where the training phase cannot rely on gap-free references but only on the available gappy data. 4DVarNet significantly outperforms other data-driven schemes such as optimal interpolation and DINEOF with a relative gain greater than 20% in terms of RMSLE and improves the high spatial resolution of patterns in the reconstruction process. Interestingly, 4DVarNet also shows a better agreement between the interpolation performance assessed for an OSSE and for real data. This result emphasizes the relevance of OSSE settings for future development calibration phases before the applications to real datasets.
机构:
Univ Pais Vasco UPV EHU, Dept Mineral & Petr, Apartado 644, Bilbao 48080, SpainUniv Pais Vasco UPV EHU, Dept Mineral & Petr, Apartado 644, Bilbao 48080, Spain
Irabien, Maria Jesus
Cearreta, Alejandro
论文数: 0引用数: 0
h-index: 0
机构:
Univ Pais Vasco UPV EHU, Dept Estratig & Paleontol, Apartado 644, Bilbao 48080, SpainUniv Pais Vasco UPV EHU, Dept Mineral & Petr, Apartado 644, Bilbao 48080, Spain
Cearreta, Alejandro
Gomez-Arozamena, Jose
论文数: 0引用数: 0
h-index: 0
机构:
Univ Cantabria UC, Dept Ciencias Med & Quirurg, Ave Herrera Oria S-N, Santander 39011, SpainUniv Pais Vasco UPV EHU, Dept Mineral & Petr, Apartado 644, Bilbao 48080, Spain
Gomez-Arozamena, Jose
Gardoki, Jon
论文数: 0引用数: 0
h-index: 0
机构:
Univ Pais Vasco UPV EHU, Dept Estratig & Paleontol, Apartado 644, Bilbao 48080, SpainUniv Pais Vasco UPV EHU, Dept Mineral & Petr, Apartado 644, Bilbao 48080, Spain
Gardoki, Jon
Martin-Consuegra, Aitor Fernandez
论文数: 0引用数: 0
h-index: 0
机构:
Univ Pais Vasco UPV EHU, Dept Estratig & Paleontol, Apartado 644, Bilbao 48080, SpainUniv Pais Vasco UPV EHU, Dept Mineral & Petr, Apartado 644, Bilbao 48080, Spain
机构:
Korea Environm Inst, Environm Data Strategy Ctr & Environm Assessment, Sejong 30147, South KoreaKorea Environm Inst, Environm Data Strategy Ctr & Environm Assessment, Sejong 30147, South Korea
Jin, Daeyong
Lee, Eojin
论文数: 0引用数: 0
h-index: 0
机构:
Korea Environm Inst, Environm Data Strategy Ctr & Environm Assessment, Sejong 30147, South KoreaKorea Environm Inst, Environm Data Strategy Ctr & Environm Assessment, Sejong 30147, South Korea
Lee, Eojin
Kwon, Kyonghwan
论文数: 0引用数: 0
h-index: 0
机构:
Oceanic, Ocean Environm Grp, Seoul 07207, South KoreaKorea Environm Inst, Environm Data Strategy Ctr & Environm Assessment, Sejong 30147, South Korea
Kwon, Kyonghwan
Kim, Taeyun
论文数: 0引用数: 0
h-index: 0
机构:
Korea Environm Inst, Environm Data Strategy Ctr & Environm Assessment, Sejong 30147, South KoreaKorea Environm Inst, Environm Data Strategy Ctr & Environm Assessment, Sejong 30147, South Korea
机构:
Univ Pais Vasco UPV EHU, Dept Mineral & Petr, Apartado 644, Bilbao 48080, SpainUniv Pais Vasco UPV EHU, Dept Mineral & Petr, Apartado 644, Bilbao 48080, Spain
Irabien, Maria Jesus
Cearreta, Alejandro
论文数: 0引用数: 0
h-index: 0
机构:
Univ Pais Vasco UPV EHU, Dept Estratig & Paleontol, Apartado 644, Bilbao 48080, SpainUniv Pais Vasco UPV EHU, Dept Mineral & Petr, Apartado 644, Bilbao 48080, Spain
Cearreta, Alejandro
Gomez-Arozamena, Jose
论文数: 0引用数: 0
h-index: 0
机构:
Univ Cantabria UC, Dept Ciencias Med & Quirurg, Ave Herrera Oria S-N, Santander 39011, SpainUniv Pais Vasco UPV EHU, Dept Mineral & Petr, Apartado 644, Bilbao 48080, Spain
Gomez-Arozamena, Jose
Gardoki, Jon
论文数: 0引用数: 0
h-index: 0
机构:
Univ Pais Vasco UPV EHU, Dept Estratig & Paleontol, Apartado 644, Bilbao 48080, SpainUniv Pais Vasco UPV EHU, Dept Mineral & Petr, Apartado 644, Bilbao 48080, Spain
Gardoki, Jon
Martin-Consuegra, Aitor Fernandez
论文数: 0引用数: 0
h-index: 0
机构:
Univ Pais Vasco UPV EHU, Dept Estratig & Paleontol, Apartado 644, Bilbao 48080, SpainUniv Pais Vasco UPV EHU, Dept Mineral & Petr, Apartado 644, Bilbao 48080, Spain
机构:
Korea Environm Inst, Environm Data Strategy Ctr & Environm Assessment, Sejong 30147, South KoreaKorea Environm Inst, Environm Data Strategy Ctr & Environm Assessment, Sejong 30147, South Korea
Jin, Daeyong
Lee, Eojin
论文数: 0引用数: 0
h-index: 0
机构:
Korea Environm Inst, Environm Data Strategy Ctr & Environm Assessment, Sejong 30147, South KoreaKorea Environm Inst, Environm Data Strategy Ctr & Environm Assessment, Sejong 30147, South Korea
Lee, Eojin
Kwon, Kyonghwan
论文数: 0引用数: 0
h-index: 0
机构:
Oceanic, Ocean Environm Grp, Seoul 07207, South KoreaKorea Environm Inst, Environm Data Strategy Ctr & Environm Assessment, Sejong 30147, South Korea
Kwon, Kyonghwan
Kim, Taeyun
论文数: 0引用数: 0
h-index: 0
机构:
Korea Environm Inst, Environm Data Strategy Ctr & Environm Assessment, Sejong 30147, South KoreaKorea Environm Inst, Environm Data Strategy Ctr & Environm Assessment, Sejong 30147, South Korea