Boundedness of the Orthogonal Projection on Harmonic Fock Spaces

被引:5
作者
Vujadinovic, Djordjije [1 ]
机构
[1] Univ Montenegro, Fac Nat Sci & Math, Dzordza Vasingtona Bb, Podgorica 81000, Montenegro
关键词
Harmonic Fock space; Orthogonal projection;
D O I
10.1007/s11785-021-01190-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The main result of this paper refers to the boundedness of the orthogonal projection P-alpha : L-2(R-n, d mu(alpha)) -> H-alpha(2), n >= 2 associated to the harmonic Fock space H-alpha(2), where d mu(alpha)(x) = (pi alpha)(-n/2)e(-vertical bar x vertical bar 2/alpha) dx. We prove that the operator P-alpha is not bounded on L-p(R-n, d mu(beta)) when 0 < p < 1 and we found a necessary and sufficient condition for the boundedness when 1 <= p < infinity and n is an even integer.
引用
收藏
页数:24
相关论文
共 15 条
[1]  
Abramovitz M., 1983, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables Applied Mathematics Series, P55
[2]  
Andrew G., 2000, SPECIAL FUNCTIONS
[3]  
Axler S., 2000, Harmonic Function Theory, Mathematics Subject Classification, p31B05
[4]  
Bateman H., 1953, Higher Transcendental Functions, VI
[5]  
Cascante C, 2020, COMPLEX ANAL OPER TH, V14, DOI 10.1007/s11785-020-00992-6
[6]   Integral operators induced by the Fock kernel [J].
Dostanic, Milutin ;
Zhu, Kehe .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 2008, 60 (02) :217-236
[7]  
Driver B., 2003, Analysis tools with applications
[8]   Berezin transform on the harmonic Fock space [J].
Englis, Miroslav .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 367 (01) :75-97
[9]  
FOLLAND GB, 1989, ANN MATH STUD, P1
[10]   Harmonic Besov spaces on the ball [J].
Gergun, Secil ;
Kaptanoglu, H. Turgay ;
Ureyen, A. Ersin .
INTERNATIONAL JOURNAL OF MATHEMATICS, 2016, 27 (09)