A Banach space mixed formulation for the unsteady Brinkman-Forchheimer equations

被引:22
作者
Caucao, Sergio [1 ,2 ]
Yotov, Ivan [1 ]
机构
[1] Univ Pittsburgh, Dept Math, Pittsburgh, PA 15260 USA
[2] Univ Catolica Santisima Concepcion, Dept Matemat & Fis Aplicadas, Casilla 297, Concepcion, Chile
基金
美国国家科学基金会;
关键词
unsteady Brinkman-Forchheimer equations; pseudostress-velocity formulation; mixed finite element methods; FINITE-ELEMENT METHODS; CONTINUOUS DEPENDENCE; APPROXIMATION; MODEL;
D O I
10.1093/imanum/draa035
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We propose and analyse a mixed formulation for the Brinkman-Forchheimer equations for unsteady flows. Our approach is based on the introduction of a pseudostress tensor related to the velocity gradient and pressure, leading to a mixed formulation where the pseudostress tensor and the velocity are the main unknowns of the system. We establish existence and uniqueness of a solution to the weak formulation in a Banach space setting, employing classical results on nonlinear monotone operators and a regularization technique. We then present well posedness and error analysis for semidiscrete continuous-in-time and fully discrete finite element approximations on simplicial grids with spatial discretization based on the Raviart-Thomas spaces of degree k for the pseudostress tensor and discontinuous piecewise polynomial elements of degree k for the velocity and backward Euler time discretization. We provide several numerical results to confirm the theoretical rates of convergence and illustrate the performance and flexibility of the method for a range of model parameters.
引用
收藏
页码:2708 / 2743
页数:36
相关论文
共 36 条
[1]  
Adams A. R., 2003, PURE APPL MATH, V140
[2]   A MULTIPOINT STRESS MIXED FINITE ELEMENT METHOD FOR ELASTICITY ON SIMPLICIAL GRIDS [J].
Ambartsumyan, Ilona ;
Khattatov, Eldar ;
Nordbotten, Jan M. ;
Yotov, Ivan .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2020, 58 (01) :630-656
[3]   A nonlinear Stokes-Biot model for the interaction of a non-Newtonian fluid with poroelastic media [J].
Ambartsumyan, Ilona ;
Ervin, Vincent J. ;
Truong Nguyen ;
Yotov, Ivan .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS, 2019, 53 (06) :1915-1955
[4]   Flow and transport in fractured poroelastic media [J].
Ambartsumyan, Ilona ;
Khattatov, Eldar ;
Truong Nguyen ;
Yotov, Ivan .
GEM-INTERNATIONAL JOURNAL ON GEOMATHEMATICS, 2019, 10 (01)
[5]   A fictitious domain model for the Stokes/Brinkman problem with jump embedded boundary conditions [J].
Angot, Philippe .
COMPTES RENDUS MATHEMATIQUE, 2010, 348 (11-12) :697-702
[6]   FINITE-ELEMENT APPROXIMATION OF THE P-LAPLACIAN [J].
BARRETT, JW ;
LIU, WB .
MATHEMATICS OF COMPUTATION, 1993, 61 (204) :523-537
[7]  
Brezis H, 2011, UNIVERSITEXT, P1
[8]  
BRINKMAN HC, 1947, APPL SCI RES, V1, P27
[9]   An Operator Splitting Approach for the Interaction Between a Fluid and a Multilayered Poroelastic Structure [J].
Bukac, Martina ;
Yotov, Ivan ;
Zunino, Paolo .
NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2015, 31 (04) :1054-1100
[10]   NUMERICAL ANALYSIS OF A DUAL-MIXED PROBLEM IN NON-STANDARD BANACH SPACES [J].
Camano, Jessika ;
Munoz, Cristian ;
Oyarzua, Ricardo .
ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS, 2018, 48 :114-130