Cross-domain gearbox diagnostics under variable working conditions with deep convolutional transfer learning

被引:27
作者
Azamfar, Moslem [1 ]
Singh, Jaskaran [1 ]
Li, Xiang [1 ]
Lee, Jay [1 ]
机构
[1] Univ Cincinnati, Dept Mech Engn, 620 Riddle Rd,Unit 1, Cincinnati, OH 45221 USA
关键词
Domain adaptation; transfer learning; fault diagnosis; deep learning; gearbox; maximum mean discrepancy; FAULT-DIAGNOSIS; KERNEL;
D O I
10.1177/1077546320933793
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
This study proposes a novel 1D deep convolutional transfer learning method that is able to learn the high-dimensional domain-invariant feature from the labeled training dataset and perform diagnosis tasks on the unlabeled testing dataset subjected to a domain shift. To obtain the domain-invariant features, the cross-entropy loss in the source domain classifier and the maximum mean discrepancies between the source and target domain data are minimized simultaneously. To evaluate the performance of the proposed method, an experimental study is conducted on a gearbox under significant speed variation. Because of inherent limitations of the vibration data, in this research, the effectiveness of torque measurement signals has been explored for gearbox fault diagnosis. Comprehensive studies on network parameters and the training sample size are performed to illustrate the robustness and effectiveness of the proposed method. A comparison study is performed on similar techniques to illustrate the superiority and high performance of the proposed diagnosis method. The achieved results illustrate the effectiveness of torque signal in multiclass cross-domain fault diagnosis of gearboxes.
引用
收藏
页码:854 / 864
页数:11
相关论文
共 21 条
[1]  
[Anonymous], 2015, NEUR DEEP LEARN REPR
[2]  
[Anonymous], 2007, MULTIPLE CLASSIFIER
[3]  
[Anonymous], 2014, MICROSCOPY MICROANAL
[4]   Multisensor data fusion for gearbox fault diagnosis using 2-D convolutional neural network and motor current signature analysis [J].
Azamfar, Moslem ;
Singh, Jaskaran ;
Bravo-Imaz, Inaki ;
Lee, Jay .
MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2020, 144
[5]   Classification of Hyperspectral Images With Regularized Linear Discriminant Analysis [J].
Bandos, Tatyana V. ;
Bruzzone, Lorenzo ;
Camps-Valls, Gustavo .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2009, 47 (03) :862-873
[6]   Fault diagnosis in spur gears based on genetic algorithm and random forest [J].
Cerrada, Mariela ;
Zurita, Grover ;
Cabrera, Diego ;
Sanchez, Rene-Vinicio ;
Artes, Mariano ;
Li, Chuan .
MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2016, 70-71 :87-103
[7]  
Glorot X., 2010, JMLR WORKSHOP C P, P249
[8]  
Gong BQ, 2012, PROC CVPR IEEE, P2066, DOI 10.1109/CVPR.2012.6247911
[9]  
Gretton A., 2012, P INT C NEUR INF PRO, P1205
[10]  
Gretton A, 2012, J MACH LEARN RES, V13, P723