Anharmonic oscillator in high dimension

被引:0
作者
Sordoni, V
机构
[1] UNIV PARIS 13,INST GALILEE,DEPT MATH,CNRS URA 742,F-93430 VILLETANEUSE,FRANCE
[2] UNIV BOLOGNA,DIPARTIMENTO MATEMAT,I-40127 BOLOGNA,ITALY
关键词
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we study the bottom of the spectrum of the semiclassical anharmonic oscillator P-m(h)=-h(2) Delta(m)+ V-m(x) where V-m(x) = mu Sigma(j=1)(m)x(j)(2)+g/(m)n-1)(n), mu is an element of R, g is an element of R(+) and n is an element of N, n>1, when the number m of interacting particles is large. Denoting by lambda(m,h) its lowest eigenvalue, we prove that lim(m-->infinity) lambda(m,h)/m exists and has a complete asymptotic expansion in powers of h, when the Planck's constant h tends to 0. For h fixed, we also obtain an expansion in powers of m(-1) for the first eigenvalues of P-m. Moreover, we consider integrals of the form I(beta,m) = integral(Rm) e(-beta Vm(x)) dx where beta is a large parameter and we prove the existence of the limit, as m--> +infinity, of the quantity (1/m)1mI(beta,m) and that this limit has an asymptotic expansion in power of beta(-1) for large values of beta.
引用
收藏
页码:131 / 166
页数:36
相关论文
共 21 条
[11]  
HELFFER B, 1988, LECTURE NOTES MATH, V1336
[12]  
KAC M, 1966, MATH MECHANISMS PHAS
[13]   COMPARISON-THEOREMS FOR THE GAP OF SCHRODINGER-OPERATORS [J].
KIRSCH, W ;
SIMON, B .
JOURNAL OF FUNCTIONAL ANALYSIS, 1987, 75 (02) :396-410
[14]   1/N-EXPANSION FOR THE ANHARMONIC-OSCILLATOR [J].
KOUDINOV, AV ;
SMONDYREV, MA .
CZECHOSLOVAK JOURNAL OF PHYSICS, 1982, 32 (05) :556-564
[15]  
RUELLE D, 1969, MATH PHYSICS MONOGRA
[16]  
Simon B., 1983, Annales de l'Institut Henri Poincare, Section A (Physique Theorique), V38, P295
[17]  
SJOSTRAND J, 1993, ANN I H POINCARE-PHY, V58, P43
[18]  
SJOSTRAND J, 1993, ANN I H POINCARE-PHY, V58, P1
[19]   EVOLUTION-EQUATIONS IN A LARGE NUMBER OF VARIABLES [J].
SJOSTRAND, J .
MATHEMATISCHE NACHRICHTEN, 1994, 166 :17-53
[20]  
SJOSTRAND J, 1992, ASTERISQUE, V210, P303