Anharmonic oscillator in high dimension

被引:0
作者
Sordoni, V
机构
[1] UNIV PARIS 13,INST GALILEE,DEPT MATH,CNRS URA 742,F-93430 VILLETANEUSE,FRANCE
[2] UNIV BOLOGNA,DIPARTIMENTO MATEMAT,I-40127 BOLOGNA,ITALY
关键词
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we study the bottom of the spectrum of the semiclassical anharmonic oscillator P-m(h)=-h(2) Delta(m)+ V-m(x) where V-m(x) = mu Sigma(j=1)(m)x(j)(2)+g/(m)n-1)(n), mu is an element of R, g is an element of R(+) and n is an element of N, n>1, when the number m of interacting particles is large. Denoting by lambda(m,h) its lowest eigenvalue, we prove that lim(m-->infinity) lambda(m,h)/m exists and has a complete asymptotic expansion in powers of h, when the Planck's constant h tends to 0. For h fixed, we also obtain an expansion in powers of m(-1) for the first eigenvalues of P-m. Moreover, we consider integrals of the form I(beta,m) = integral(Rm) e(-beta Vm(x)) dx where beta is a large parameter and we prove the existence of the limit, as m--> +infinity, of the quantity (1/m)1mI(beta,m) and that this limit has an asymptotic expansion in power of beta(-1) for large values of beta.
引用
收藏
页码:131 / 166
页数:36
相关论文
共 21 条
[1]  
AGMON S, MATH NOTES, V29
[2]  
Brezin E., 1979, J PHYS A, V12, P759
[3]  
GLIMM J, QUANTUM PHYSICS
[4]   DOUBLE WELLS [J].
HARRELL, EM .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1980, 75 (03) :239-261
[5]   ON THE CORRELATION FOR KAC-LIKE MODELS IN THE CONVEX CASE [J].
HELFFER, B ;
SJOSTRAND, J .
JOURNAL OF STATISTICAL PHYSICS, 1994, 74 (1-2) :349-409
[6]  
HELFFER B, 1985, ANN I H POINCARE-PHY, V42, P127
[7]   MULTIPLE WELLS IN THE SEMI-CLASSICAL LIMIT I [J].
HELFFER, B ;
SJOSTRAND, J .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1984, 9 (04) :337-408
[8]  
HELFFER B, 1992, HELV PHYS ACTA, V65, P748
[9]   AROUND A STATIONARY-PHASE THEOREM IN LARGE DIMENSION [J].
HELFFER, B .
JOURNAL OF FUNCTIONAL ANALYSIS, 1994, 119 (01) :217-252
[10]  
HELFFER B, 1992, ASTERISQUE, V210, P135