A maximum likelihood approximation method for Dirichlet's parameter estimation

被引:32
|
作者
Wicker, Nicolas [1 ]
Muller, Jean [1 ,2 ]
Kalathur, Ravi Kiran Reddy [1 ]
Poch, Olivier [1 ]
机构
[1] ULP, INSERM, CNRS, Lab Bioinformat & Genom Integrat,Inst Genet & Bio, F-67404 Illkirch Graffenstaden, France
[2] European Mol Biol Lab, Computat Biol Unit, D-69117 Heidelberg, Germany
关键词
Dirichlet distribution; maximum likelihood; parameter estimation; proteins clustering;
D O I
10.1016/j.csda.2007.07.011
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Dirichlet distributions are natural choices to analyse data described by frequencies or proportions since they are the simplest known distributions for such data apart from the uniform distribution. They are often used whenever proportions are involved, for example, in text-mining, image analysis, biology or as a prior of a multinomial distribution in Bayesian statistics. As the Dirichlet distribution belongs to the exponential family, its parameters can be easily inferred by maximum likelihood. Parameter estimation is usually performed with the Newton-Raphson algorithm after an initialisation step using either the moments or Ronning's methods. However this initialisation can result in parameters that lie outside the admissible region. A simple and very efficient alternative based on a maximum likelihood approximation is presented. The advantages of the presented method compared to two other methods are demonstrated on synthetic data sets as well as for a practical biological problem: the clustering of protein sequences based on their amino acid compositions. (c) 2007 Elsevier B.V All rights reserved.
引用
收藏
页码:1315 / 1322
页数:8
相关论文
共 50 条
  • [41] Maximum-likelihood parameter estimation in terahertz time-domain spectroscopy
    Mohtashemi, Laleh
    Westlund, Paul
    Sahota, Derek G.
    Lea, Graham B.
    Bushfield, Ian
    Mousavi, Payam
    Dodge, J. Steven
    OPTICS EXPRESS, 2021, 29 (04) : 4912 - 4926
  • [42] Parameter estimation of three-parameter Weibull distribution by hybrid gray genetic algorithm with modified maximum likelihood method with small samples
    Gu, Jianyi
    Kong, Xiangwei
    Guo, Jin
    Qi, Haochen
    Wang, Zinan
    JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY, 2024, : 5363 - 5379
  • [43] On maximum likelihood estimation of the concentration parameter of von Mises-Fisher distributions
    Hornik, Kurt
    Gruen, Bettina
    COMPUTATIONAL STATISTICS, 2014, 29 (05) : 945 - 957
  • [44] Maximum Likelihood Parameter Estimation of Nakagami-Gamma Shadowed Fading Channels
    Bouhlel, Nizar
    Dziri, Ali
    IEEE COMMUNICATIONS LETTERS, 2015, 19 (04) : 685 - 688
  • [45] Perturbative method for maximum likelihood estimation of the Weibull distribution parameters
    Coria, V. H.
    Maximov, S.
    Rivas-Davalos, F.
    Melchor-Hernandez, C. L.
    SPRINGERPLUS, 2016, 5
  • [46] Evaluating the performance of a successive-approximations approach to parameter optimization in maximum-likelihood phylogeny estimation
    Sullivan, J
    Abdo, Z
    Joyce, P
    Swofford, DL
    MOLECULAR BIOLOGY AND EVOLUTION, 2005, 22 (06) : 1386 - 1392
  • [47] An efficient method for maximum likelihood estimation of a stochastic volatility model
    Huang, Shirley J.
    Yu, Jun
    STATISTICS AND ITS INTERFACE, 2008, 1 (02) : 289 - 296
  • [48] A note on maximum likelihood estimation
    Hengartner, NW
    AMERICAN STATISTICIAN, 1999, 53 (02) : 123 - 125
  • [49] Maximum entropy and maximum likelihood in spectral estimation
    Landau, HJ
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1998, 44 (03) : 1332 - 1336
  • [50] Sparse Approximation-Based Maximum Likelihood Approach for Estimation of Radiological Source Terms
    Lee, Taewook
    Singla, Puneet
    Singh, Tarunraj
    Gunatilaka, Ajith
    IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2016, 63 (02) : 1169 - 1187