A maximum likelihood approximation method for Dirichlet's parameter estimation

被引:32
|
作者
Wicker, Nicolas [1 ]
Muller, Jean [1 ,2 ]
Kalathur, Ravi Kiran Reddy [1 ]
Poch, Olivier [1 ]
机构
[1] ULP, INSERM, CNRS, Lab Bioinformat & Genom Integrat,Inst Genet & Bio, F-67404 Illkirch Graffenstaden, France
[2] European Mol Biol Lab, Computat Biol Unit, D-69117 Heidelberg, Germany
关键词
Dirichlet distribution; maximum likelihood; parameter estimation; proteins clustering;
D O I
10.1016/j.csda.2007.07.011
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Dirichlet distributions are natural choices to analyse data described by frequencies or proportions since they are the simplest known distributions for such data apart from the uniform distribution. They are often used whenever proportions are involved, for example, in text-mining, image analysis, biology or as a prior of a multinomial distribution in Bayesian statistics. As the Dirichlet distribution belongs to the exponential family, its parameters can be easily inferred by maximum likelihood. Parameter estimation is usually performed with the Newton-Raphson algorithm after an initialisation step using either the moments or Ronning's methods. However this initialisation can result in parameters that lie outside the admissible region. A simple and very efficient alternative based on a maximum likelihood approximation is presented. The advantages of the presented method compared to two other methods are demonstrated on synthetic data sets as well as for a practical biological problem: the clustering of protein sequences based on their amino acid compositions. (c) 2007 Elsevier B.V All rights reserved.
引用
收藏
页码:1315 / 1322
页数:8
相关论文
共 50 条
  • [31] Maximum likelihood parameter estimation in probabilistic fuzzy classifiers
    Waltman, L
    Kaymak, U
    van den Berg, J
    FUZZ-IEEE 2005: PROCEEDINGS OF THE IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS: BIGGEST LITTLE CONFERENCE IN THE WORLD, 2005, : 1098 - 1103
  • [32] MAXIMUM LIKELIHOOD PARAMETER ESTIMATION FOR THE MIXTURES OF NORMAL DISTRIBUTIONS
    Rahman, Mezbahur
    Mahzabeen, Sabiha
    ADVANCES AND APPLICATIONS IN STATISTICS, 2018, 53 (05) : 501 - 518
  • [33] Maximum-likelihood symmetric α-stable parameter estimation
    Bodenschatz, JS
    Nikias, CL
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1999, 47 (05) : 1382 - 1384
  • [34] Maximum likelihood parameter estimation of a spiking silicon neuron
    Russell, Alexander
    Etienne-Cummings, Ralph
    2011 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS), 2011, : 669 - 672
  • [35] MAXIMUM LIKELIHOOD ESTIMATION OF A TRANSLATION PARAMETER OF A TRUNCATED DISTRIBUTION
    WOODROOFE, M
    ANNALS OF MATHEMATICAL STATISTICS, 1972, 43 (01): : 113 - +
  • [36] On maximum likelihood estimation for the two parameter Weibull distribution
    Watkins, AJ
    MICROELECTRONICS AND RELIABILITY, 1996, 36 (05): : 595 - 603
  • [37] Parameter estimation using polynomial chaos and maximum likelihood
    Chen-Charpentier, Benito
    Stanescu, Dan
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2014, 91 (02) : 336 - 346
  • [38] MAXIMUM LIKELIHOOD ESTIMATION OF A TRANSLATION PARAMETER OF A TRUNCATED DISTRIBUTION
    WEISS, L
    WOLFOWIT.J
    ANNALS OF STATISTICS, 1973, 1 (05): : 944 - 947
  • [39] Maximum Likelihood Parameter Estimation of CNC System Reliability
    Gu, Yan
    Wang, Yiqiang
    Zhou, Xiaoqin
    Yuan, Xiuhua
    MECHANICAL STRUCTURES AND SMART MATERIALS, 2014, 487 : 282 - +
  • [40] Maximum likelihood estimation for the drift parameter in diffusion processes
    Wei, Chao
    Shu, Huisheng
    STOCHASTICS-AN INTERNATIONAL JOURNAL OF PROBABILITY AND STOCHASTIC REPORTS, 2016, 88 (05): : 699 - 710