A maximum likelihood approximation method for Dirichlet's parameter estimation

被引:32
|
作者
Wicker, Nicolas [1 ]
Muller, Jean [1 ,2 ]
Kalathur, Ravi Kiran Reddy [1 ]
Poch, Olivier [1 ]
机构
[1] ULP, INSERM, CNRS, Lab Bioinformat & Genom Integrat,Inst Genet & Bio, F-67404 Illkirch Graffenstaden, France
[2] European Mol Biol Lab, Computat Biol Unit, D-69117 Heidelberg, Germany
关键词
Dirichlet distribution; maximum likelihood; parameter estimation; proteins clustering;
D O I
10.1016/j.csda.2007.07.011
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Dirichlet distributions are natural choices to analyse data described by frequencies or proportions since they are the simplest known distributions for such data apart from the uniform distribution. They are often used whenever proportions are involved, for example, in text-mining, image analysis, biology or as a prior of a multinomial distribution in Bayesian statistics. As the Dirichlet distribution belongs to the exponential family, its parameters can be easily inferred by maximum likelihood. Parameter estimation is usually performed with the Newton-Raphson algorithm after an initialisation step using either the moments or Ronning's methods. However this initialisation can result in parameters that lie outside the admissible region. A simple and very efficient alternative based on a maximum likelihood approximation is presented. The advantages of the presented method compared to two other methods are demonstrated on synthetic data sets as well as for a practical biological problem: the clustering of protein sequences based on their amino acid compositions. (c) 2007 Elsevier B.V All rights reserved.
引用
收藏
页码:1315 / 1322
页数:8
相关论文
共 50 条
  • [21] Improved maximum likelihood method for ship parameter identification
    Chen, Hongli
    Li, Qiang
    Wang, Ziyuan
    2018 37TH CHINESE CONTROL CONFERENCE (CCC), 2018, : 1614 - 1621
  • [22] ON MAXIMUM-LIKELIHOOD-ESTIMATION IN INFINITE DIMENSIONAL PARAMETER SPACES
    WONG, WH
    SEVERINI, TA
    ANNALS OF STATISTICS, 1991, 19 (02) : 603 - 632
  • [23] Maximum likelihood estimation for the two-parameter maxwell distribution
    Kasap, P.
    Faouri, Ao
    JOURNAL OF THE NATIONAL SCIENCE FOUNDATION OF SRI LANKA, 2024, 52 (04): : 441 - 458
  • [24] Maximum likelihood estimation of an across-regime correlation parameter
    Calzolari, Giorgio
    Campolo, Maria Gabriella
    Di Pino, Antonino
    Magazzini, Laura
    STATA JOURNAL, 2021, 21 (02) : 430 - 461
  • [25] Maximum-likelihood estimation, the Cramer-Rao bound, and the method of scoring with, parameter constraints
    Moore, Terrence J.
    Sadler, Brian M.
    Kozick, Richard J.
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2008, 56 (03) : 895 - 908
  • [26] A stochastic approximation algorithm for maximum-likelihood estimation with incomplete data
    Gu, MG
    Li, SL
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 1998, 26 (04): : 567 - 582
  • [27] Fast maximum likelihood scale parameter estimation from histogram measurements
    Colonnese S.
    Rinauro S.
    Scarano G.
    IEEE Signal Processing Letters, 2011, 18 (08) : 474 - 477
  • [28] On maximum likelihood estimation of the concentration parameter of von Mises–Fisher distributions
    Kurt Hornik
    Bettina Grün
    Computational Statistics, 2014, 29 : 945 - 957
  • [29] Improved maximum-likelihood estimation of the shape parameter in the Nakagami distribution
    Schwartz, Jacob
    Godwin, Ryan T.
    Giles, David E.
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2013, 83 (03) : 434 - 445
  • [30] Maximum Likelihood BSC Parameter Estimation for the Slepian-Wolf Problem
    Toto-Zarasoa, Velotiaray
    Roumy, Aline
    Guillemot, Christine
    IEEE COMMUNICATIONS LETTERS, 2011, 15 (02) : 232 - 234