A maximum likelihood approximation method for Dirichlet's parameter estimation

被引:32
|
作者
Wicker, Nicolas [1 ]
Muller, Jean [1 ,2 ]
Kalathur, Ravi Kiran Reddy [1 ]
Poch, Olivier [1 ]
机构
[1] ULP, INSERM, CNRS, Lab Bioinformat & Genom Integrat,Inst Genet & Bio, F-67404 Illkirch Graffenstaden, France
[2] European Mol Biol Lab, Computat Biol Unit, D-69117 Heidelberg, Germany
关键词
Dirichlet distribution; maximum likelihood; parameter estimation; proteins clustering;
D O I
10.1016/j.csda.2007.07.011
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Dirichlet distributions are natural choices to analyse data described by frequencies or proportions since they are the simplest known distributions for such data apart from the uniform distribution. They are often used whenever proportions are involved, for example, in text-mining, image analysis, biology or as a prior of a multinomial distribution in Bayesian statistics. As the Dirichlet distribution belongs to the exponential family, its parameters can be easily inferred by maximum likelihood. Parameter estimation is usually performed with the Newton-Raphson algorithm after an initialisation step using either the moments or Ronning's methods. However this initialisation can result in parameters that lie outside the admissible region. A simple and very efficient alternative based on a maximum likelihood approximation is presented. The advantages of the presented method compared to two other methods are demonstrated on synthetic data sets as well as for a practical biological problem: the clustering of protein sequences based on their amino acid compositions. (c) 2007 Elsevier B.V All rights reserved.
引用
收藏
页码:1315 / 1322
页数:8
相关论文
共 50 条
  • [1] Stochastic maximum likelihood method for propagation parameter estimation
    Ribeiro, CB
    Ollila, E
    Koivunen, V
    2004 IEEE 15TH INTERNATIONAL SYMPOSIUM ON PERSONAL, INDOOR AND MOBILE RADIO COMMUNICATIONS, VOLS 1-4, PROCEEDINGS, 2004, : 1839 - 1843
  • [2] Parameter estimation using polynomial chaos and maximum likelihood
    Chen-Charpentier, Benito
    Stanescu, Dan
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2014, 91 (02) : 336 - 346
  • [3] Stochastic maximum-likelihood method for MIMO propagation parameter estimation
    Ribeiro, Cassio B.
    Ollila, Esa
    Koivunen, Visa
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2007, 55 (01) : 46 - 55
  • [4] Ultrasonic Parameter Estimation Using the Maximum Likelihood Estimation
    Laddada, S.
    Lemlikchi, S.
    Djelouah, H.
    Si-Chaib, M. O.
    2015 4TH INTERNATIONAL CONFERENCE ON ELECTRICAL ENGINEERING (ICEE), 2015, : 200 - +
  • [5] Tumor growth modeling: Parameter estimation with Maximum Likelihood methods
    Patmanidis, Spyridon
    Charalampidis, Alexandros C.
    Kordonis, Ioannis
    Mitsis, Georgios D.
    Papavassilopoulos, George P.
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2018, 160 : 1 - 10
  • [6] Maximum likelihood method for parameter estimation of bell-shaped functions on graphs
    Jain, Brijnesh J.
    PATTERN RECOGNITION LETTERS, 2012, 33 (15) : 2000 - 2010
  • [7] Maximum likelihood parameter estimation algorithm for controlled autoregressive autoregressive models
    Wang, Wei
    Li, Junhong
    Ding, Ruifeng
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2011, 88 (16) : 3458 - 3467
  • [8] Maximum-likelihood parameter estimation of bilinear systems
    Gibson, S
    Wills, A
    Ninness, B
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2005, 50 (10) : 1581 - 1596
  • [9] Maximum Likelihood Parameter Estimation of CNC System Reliability
    Gu, Yan
    Wang, Yiqiang
    Zhou, Xiaoqin
    Yuan, Xiuhua
    MECHANICAL STRUCTURES AND SMART MATERIALS, 2014, 487 : 282 - +
  • [10] Gradient Parameter Estimation of a Class of Nonlinear Systems Based on the Maximum Likelihood Principle
    Zhang, Chen
    Liu, Haibo
    Ji, Yan
    INTERNATIONAL JOURNAL OF CONTROL AUTOMATION AND SYSTEMS, 2022, 20 (05) : 1393 - 1404