Self-Exciting Point Process Modeling of Crime

被引:497
|
作者
Mohler, G. O. [1 ]
Short, M. B. [2 ]
Brantingham, P. J. [3 ]
Schoenberg, F. P. [4 ]
Tita, G. E. [5 ]
机构
[1] Santa Clara Univ, Dept Math & Comp Sci, Santa Clara, CA 95053 USA
[2] Univ Calif Los Angeles, Dept Math, Los Angeles, CA 90095 USA
[3] Univ Calif Los Angeles, Dept Anthropol, Los Angeles, CA 90095 USA
[4] Univ Calif Los Angeles, Dept Stat, Los Angeles, CA 90095 USA
[5] Univ Calif Irvine, Dept Criminol Law & Soc, Irvine, CA 92697 USA
基金
美国国家科学基金会;
关键词
Crime hotspot; Epidemic Type Aftershock Sequences (ETAS); Point process; PATTERNS;
D O I
10.1198/jasa.2011.ap09546
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Highly clustered event sequences are observed in certain types of crime data, such as burglary and gang violence, due to crime-specific patterns of criminal behavior. Similar clustering patterns are observed by seismologists, as earthquakes are well known to increase the risk of subsequent earthquakes, or aftershocks, near the location of an initial event. Space time clustering is modeled in seismology by self-exciting point processes and the focus of this article is to show that these methods are well suited for criminological applications. We first review self-exciting point processes in the context of seismology. Next, using residential burglary data provided by the Los Angeles Police Department, we illustrate the implementation of self-exciting point process models in the context of urban crime. For this purpose we use a fully nonparametric estimation methodology to gain insight into the form of the space time triggering function and temporal trends in the background rate of burglary.
引用
收藏
页码:100 / 108
页数:9
相关论文
共 50 条
  • [21] Local Density Estimation Procedure for Autoregressive Modeling of Point Process Data
    Pavasant, Nat
    Morita, Takashi
    Numao, Masayuki
    Fukui, Ken-ichi
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2024, E107D (11) : 1453 - 1457
  • [22] CRIME MODELING WITH LEVY FLIGHTS
    Chaturapruek, Sorathan
    Breslau, Jonah
    Yazdi, Daniel
    Kolokolnikov, Theodore
    McCalla, Scott G.
    SIAM JOURNAL ON APPLIED MATHEMATICS, 2013, 73 (04) : 1703 - 1720
  • [23] sppmix: Poisson point process modeling using normal mixture models
    Micheas, Athanasios C.
    Chen, Jiaxun
    COMPUTATIONAL STATISTICS, 2018, 33 (04) : 1767 - 1798
  • [24] Novel evaluation metrics for sparse spatio-temporal point process hotspot predictions - a crime case study
    Adepeju, Monsuru
    Rosser, Gabriel
    Cheng, Tao
    INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE, 2016, 30 (11) : 2133 - 2154
  • [25] Modeling non-stationary extreme waves using a point process approach and wavelets
    P. Galiatsatou
    P. Prinos
    Stochastic Environmental Research and Risk Assessment, 2011, 25 : 165 - 183
  • [26] Modeling non-stationary extreme waves using a point process approach and wavelets
    Galiatsatou, P.
    Prinos, P.
    STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT, 2011, 25 (02) : 165 - 183
  • [27] Point Process Modeling of Interbreath Interval: A New Approach for the Assessment of Instability of Breathing in Neonates
    Indic, Premananda
    Paydarfar, David
    Barbieri, Riccardo
    IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2013, 60 (10) : 2858 - 2866
  • [28] A point process modeling approach for investigating the effect of online brain activity on perceptual switching
    Matsuda, Takeru
    Kitajo, Keiichi
    Yamaguchi, Yoko
    Komaki, Fumiyasu
    NEUROIMAGE, 2017, 152 : 50 - 59
  • [29] Point-shift foliation of a point process
    Baccelli, Francois
    Haji-Mirsadeghi, Mir-Omid
    ELECTRONIC JOURNAL OF PROBABILITY, 2018, 23
  • [30] Modeling of Cellular Networks Using Stationary and Nonstationary Point Processes
    Chen, Chunlin
    Elliott, Robert C.
    Krzymien, Witold A.
    Melzer, Jordan
    IEEE ACCESS, 2018, 6 : 47144 - 47162