Automatic Tumor Segmentation with Deep Convolutional Neural Networks for Radiotherapy Applications

被引:89
作者
Wang, Yan [1 ,2 ]
Zu, Chen [3 ]
Hu, Guangliang [4 ]
Luo, Yong [5 ]
Ma, Zongqing [1 ]
He, Kun [1 ]
Wu, Xi [6 ]
Zhou, Jiliu [1 ,6 ]
机构
[1] Sichuan Univ, Coll Comp Sci, Chengdu, Sichuan, Peoples R China
[2] Minjiang Univ, Fujian Prov Key Lab Informat Proc & Intelligent C, Fuzhou 350121, Fujian, Peoples R China
[3] Nanjing Univ Aeronaut & Astronaut, Coll Comp Sci & Technol, Nanjing, Jiangsu, Peoples R China
[4] Sichuan Univ, Coll Elect & Informat Engn, Chengdu, Sichuan, Peoples R China
[5] Sichuan Univ, West China Hosp, Dept Head & Neck & Mammary Oncol, Chengdu, Sichuan, Peoples R China
[6] Chengdu Univ Informat Technol, Dept Comp Sci, Chengdu, Sichuan, Peoples R China
关键词
Nasopharyngeal carcinoma (NPC); 3D image; Magnetic resonance images (MRI); Medical image segmentation; Deep convolutional neural network; CARCINOMA LESION SEGMENTATION; NASOPHARYNGEAL; IMAGES;
D O I
10.1007/s11063-017-9759-3
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Accurate tumor delineation in medical images is of great importance in guiding radiotherapy. In nasopharyngeal carcinoma (NPC), due to its high variability, low contrast and discontinuous boundaries in magnetic resonance images (MRI), the margin of the tumor is especially difficult to be identified, making the radiotherapy planning a more challenging problem. The objective of this paper is to develop an automatic segmentation method of NPC in MRI for radiosurgery applications. To this end, we present to segment NPC using a deep convolutional neural network. Specifically, to obtain spatial consistency as well as accurate feature details for segmentation, multiple convolution kernel sizes are employed. The network contains a large number of trainable parameters which capture the relationship between the MRI intensity images and the corresponding label maps. When trained on subjects with pre-labeled MRI, the network can estimate the label class of each voxel for the testing subject which is only given the intensity image. To demonstrate the segmentation performance, we carry on our method on the T1-weighted images of 15 NPC patients, and compare the segmentation results against the radiologist's reference outline. Experimental results show that the proposed method outperforms the traditional hand-crafted features based segmentation methods. The presented method in this paper could be useful for NPC diagnosis and helpful for guiding radiotherapy.
引用
收藏
页码:1323 / 1334
页数:12
相关论文
共 33 条
[1]   Neuronal pathology in the hippocampal area of patients with bipolar disorder: A study with proton magnetic resonance spectroscopic imaging [J].
Bertolino, A ;
Frye, M ;
Callicott, JH ;
Mattay, VS ;
Rakow, R ;
Shelton-Repella, J ;
Post, R ;
Weinberger, DR .
BIOLOGICAL PSYCHIATRY, 2003, 53 (10) :906-913
[2]   Gradient computation of continuous-time cellular neural/nonlinear networks with linear templates via the CNN universal machine [J].
Brendel, M ;
Roska, T ;
Bártfai, G .
NEURAL PROCESSING LETTERS, 2002, 16 (02) :111-120
[3]   Nasopharyngeal carcinoma segmentation using a region growing technique [J].
Chanapai, Weerayuth ;
Bhongmakapat, Thongchai ;
Tuntiyatorn, Lojana ;
Ritthipravat, Panrasee .
INTERNATIONAL JOURNAL OF COMPUTER ASSISTED RADIOLOGY AND SURGERY, 2012, 7 (03) :413-422
[4]   The enigmatic epidemiology of nasopharyngeal carcinoma [J].
Chang, Ellen T. ;
Adami, Hans-Olov .
CANCER EPIDEMIOLOGY BIOMARKERS & PREVENTION, 2006, 15 (10) :1765-1777
[5]   Bio-inspired neural network with application to license plate recognition: hysteretic ELM approach [J].
Chen, Liang ;
Cui, Leitao ;
Huang, Rong ;
Ren, Zhengyun .
ASSEMBLY AUTOMATION, 2016, 36 (02) :172-178
[6]  
de Brebisson Alexandre, 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), P20, DOI 10.1109/CVPRW.2015.7301312
[7]   Semi-automatic delitneation using weighted CT-MRI registered images for radiotherapy of nasopharyngeal cancer [J].
Fitton, I. ;
Cornelissen, S. A. P. ;
Duppen, J. C. ;
Steenbakkers, R. J. H. M. ;
Peeters, S. T. H. ;
Hoebers, F. J. P. ;
Kaanders, J. H. A. M. ;
Nowak, P. J. C. M. ;
Rasch, C. R. N. ;
van Herk, M. .
MEDICAL PHYSICS, 2011, 38 (08) :4662-4666
[8]   Event Classification in Microblogs via Social Tracking [J].
Gao, Yue ;
Zhang, Hanwang ;
Zhao, Xibin ;
Yan, Shuicheng .
ACM TRANSACTIONS ON INTELLIGENT SYSTEMS AND TECHNOLOGY, 2017, 8 (03)
[9]   3-D Object Retrieval and Recognition With Hypergraph Analysis [J].
Gao, Yue ;
Wang, Meng ;
Tao, Dacheng ;
Ji, Rongrong ;
Dai, Qionghai .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2012, 21 (09) :4290-4303
[10]  
[洪容容 Hong Rongrong], 2014, [福州大学学报. 自然科学版, Journal of Fuzhou University. Natural Science Edition], V42, P683