A new pulse plasma enhanced atomic layer deposition of tungsten nitride diffusion barrier for copper interconnect

被引:20
|
作者
Sim, HS
Kim, SI
Jeon, H
Kim, YT
机构
[1] Korea Inst Sci & Technol, Semicond Mat & Devices Lab, Seoul, South Korea
[2] Hanyang Univ, Div Mat Sci & Engn, Seoul 133791, South Korea
来源
JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS SHORT NOTES & REVIEW PAPERS | 2003年 / 42卷 / 10期
关键词
atomic layer deposition; diffusion barrier; tungsten nitride; remote plasma;
D O I
10.1143/JJAP.42.6359
中图分类号
O59 [应用物理学];
学科分类号
摘要
We have deposited W-N thin films with a pulse plasma enhanced atomic layer deposition (PPALD) method by using WF6 and NH3. It has been very difficult to deposit W-N film on the SiO2 surface with ALD method by using WF6 and NH3 because WF6 does not adsorb on the SiO2 surface and not react with NH3 at 200-400degreesC. However, in this work introducing NH3 pulse plasma, which is synchronized with ALD cycles, we can deposit the W-N film on the SiO2 surface with the rate of similar to1.3 monolayer/cycle at 350degreesC. N concentration is also uniformly distributed in the W-N film. This is due to the surface nitridation to enhance the adsorption of WF6 at the SiO2 surface. As a diffusion barrier for the Cu interconnect, electrical measurement reveals that 22 nm thick W-N successfully prevents Cu diffusion after the annealing at 600degreesC for 30 min.
引用
收藏
页码:6359 / 6362
页数:4
相关论文
共 50 条
  • [21] Growth of aluminum nitride thin films prepared by plasma-enhanced atomic layer deposition
    Lee, YJ
    Kang, SW
    THIN SOLID FILMS, 2004, 446 (02) : 227 - 231
  • [22] Temperature Dependence of Copper Diffusion in Different Thickness Amorphous Tungsten/Tungsten Nitride Layer
    Asgary, Somayeh
    Hantehzadeh, Mohammad Reza
    Ghoranneviss, Mahmood
    PHYSICS OF METALS AND METALLOGRAPHY, 2017, 118 (11) : 1127 - 1135
  • [23] Thermal stability of amorphous tungsten/tungsten nitride synthesis using HFCVD as a diffusion barrier for copper
    Somayeh Asgary
    Mohammad Reza Hantehzadeh
    Mahmood Ghoranneviss
    Arash Boochani
    Applied Physics A, 2016, 122
  • [24] Atomic layer deposition of copper nitride film and its application to copper seed layer for electrodeposition
    Park, Jae-Min
    Jin, Kwangseon
    Han, Byeol
    Kim, Myung Jun
    Jung, Jongwan
    Kim, Jae Jeong
    Lee, Won-Jun
    THIN SOLID FILMS, 2014, 556 : 434 - 439
  • [25] Plasma enhanced atomic layer deposition of manganese nitride thin film from manganese amidinate and ammonia plasma
    Chen, Sen
    Ren, Jiaxuan
    Yang, Douhao
    Sang, Lijun
    Liu, Bowen
    Chen, Qiang
    Liu, Zhongwei
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A, 2023, 41 (04):
  • [26] Plasma-enhanced atomic layer deposition of Cu-Mn films with formation of a MnSixOy barrier layer
    Moon, Dae-Yong
    Han, Dong-Suk
    Park, Jae-Hyung
    Shin, Sae-Young
    Park, Jong-Wan
    Kim, Baek Mann
    Cho, Jun Yeol
    THIN SOLID FILMS, 2012, 521 : 146 - 149
  • [27] Microstructure analysis of plasma enhanced atomic layer deposition-grown mixed-phase RuTaN barrier for seedless copper electrodeposition
    Chakraborty, Tonmoy
    Eisenbraun, Eric T.
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A, 2012, 30 (02):
  • [28] Superconducting niobium titanium nitride thin films deposited by plasma-enhanced atomic layer deposition
    Yemane, Y. T.
    Sowa, M. J.
    Zhang, J.
    Ju, L.
    Deguns, E. W.
    Strandwitz, N. C.
    Prinz, F. B.
    Provine, J.
    SUPERCONDUCTOR SCIENCE & TECHNOLOGY, 2017, 30 (09)
  • [29] Barrier characteristics of TaN films deposited by using the remote plasma enhanced atomic layer deposition method
    Kim, JY
    Lee, KW
    Park, HO
    Kim, YD
    Jeon, H
    Kim, Y
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2004, 45 (04) : 1069 - 1073
  • [30] Ru thin film grown on TaN by plasma enhanced atomic layer deposition
    Xie, Qi
    Jiang, Yu-Long
    Musschoot, Jan
    Deduytsche, Davy
    Detavernier, Christophe
    Van Meirhaeghe, Roland L.
    Van den Berghe, Sven
    Ru, Guo-Ping
    Li, Bing-Zong
    Qu, Xin-Ping
    THIN SOLID FILMS, 2009, 517 (16) : 4689 - 4693