Improved Lightweight Semantic Segmentation Algorithm Based on DeepLabv3+ Network

被引:1
作者
Yao Yan [1 ]
Hu Likun [1 ]
Guo Jun [1 ]
机构
[1] Guangxi Univ, Sch Elect Engn, Nanning 530004, Guangxi, Peoples R China
关键词
image processing; DeepLabv3+ model; MobileNetv3; lightweight; atrous spatial pyramid pooling;
D O I
10.3788/LOP202259.0410015
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Due to the large number of semantic segmentation model parameters and time- consuming algorithm in deep learning, it is not suitable for deployment to mobile terminal. To solve this problem, a lightweight semantic segmentation algorithm based on improved DeepLabv3+ network is proposed. First, MobileNetv3 is used to replace the original DeepLabv3+ semantic segmentation model backbone network for feature extraction to reduce the complexity of the model and speed up the running speed of the model; second, the standard convolution in atrous spatial pyramid pooling module is replaced by depthwise separable convolution to improve the efficiency of model training; finally, the attention mechanism module and group normalization method are introduced to improve the segmentation accuracy. The proposed segmentation algorithm achieves a mean intersection over union (mIoU) of 72. 94% on the Cityscapes validation set of semantic segmentation dataset. Experimental results show that compared with common segmentation algorithms such as SegNet, Fast-SCNN, and ENet, the proposed algorithm can improve the segmentation effect while reducing the number of model parameters.
引用
收藏
页数:8
相关论文
共 24 条
[1]   SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation [J].
Badrinarayanan, Vijay ;
Kendall, Alex ;
Cipolla, Roberto .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2017, 39 (12) :2481-2495
[2]   Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation [J].
Chen, Liang-Chieh ;
Zhu, Yukun ;
Papandreou, George ;
Schroff, Florian ;
Adam, Hartwig .
COMPUTER VISION - ECCV 2018, PT VII, 2018, 11211 :833-851
[3]   DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs [J].
Chen, Liang-Chieh ;
Papandreou, George ;
Kokkinos, Iasonas ;
Murphy, Kevin ;
Yuille, Alan L. .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2018, 40 (04) :834-848
[4]  
Chen LB, 2017, IEEE INT SYMP NANO, P1, DOI 10.1109/NANOARCH.2017.8053709
[5]  
CHOLLET F, 2017, PROC CVPR IEEE, P1800, DOI [DOI 10.1109/CVPR.2017.195, 10.1109/CVPR.2017.195]
[6]   The Cityscapes Dataset for Semantic Urban Scene Understanding [J].
Cordts, Marius ;
Omran, Mohamed ;
Ramos, Sebastian ;
Rehfeld, Timo ;
Enzweiler, Markus ;
Benenson, Rodrigo ;
Franke, Uwe ;
Roth, Stefan ;
Schiele, Bernt .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :3213-3223
[7]   Searching for MobileNetV3 [J].
Howard, Andrew ;
Sandler, Mark ;
Chu, Grace ;
Chen, Liang-Chieh ;
Chen, Bo ;
Tan, Mingxing ;
Wang, Weijun ;
Zhu, Yukun ;
Pang, Ruoming ;
Vasudevan, Vijay ;
Le, Quoc V. ;
Adam, Hartwig .
2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, :1314-1324
[8]  
Hu J, 2018, PROC CVPR IEEE, P7132, DOI [10.1109/CVPR.2018.00745, 10.1109/TPAMI.2019.2913372]
[9]   Automatic Extraction and Classification of Road Markings Based on Deep Learning [J].
Huang Gang ;
Liu Xianlin .
CHINESE JOURNAL OF LASERS-ZHONGGUO JIGUANG, 2019, 46 (08)
[10]  
Ioffe S., 2019, BATCH NORMALIZATION