A new heuristic computational solver for nonlinear singular Thomas-Fermi system using evolutionary optimized cubic splines

被引:100
作者
Ahmad, Siraj ul Islam [1 ]
Faisal, Fawad [1 ]
Shoaib, Muhammad [2 ]
Raja, Muhammad Asif Zahoor [3 ]
机构
[1] COMSATS Univ Islamabad, Dept Phys, Islamabad, Pakistan
[2] COMSATS Univ Islamabad, Dept Math, Attock Campus, Attock, Pakistan
[3] COMSATS Univ Islamabad, Dept Elect & Comp Engn, Attock Campus, Attock, Pakistan
关键词
GENETIC ALGORITHM; HEAT-TRANSFER; COLLOCATION METHOD; FLUID-FLOW; INTELLIGENT; DESIGN; MODEL; MAJORANA; EQUATION; DYNAMICS;
D O I
10.1140/epjp/s13360-019-00066-3
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In the present work, a new stochastic computing technique based on evolutionary cubic spline method (CSM) is introduced for solving nonlinear singular Thomas-Fermi system arising in atomic physics. The concept of cubic splines interpolation is engaged with an evolutionary optimization technique based on genetic algorithms (GAs) hybrid with sequential quadratic programming (SQP) to develop a proposed methodology, CSM-GASQP, that can solve nonlinear differential equations, and GA produces the optimized value for the coefficients of cubic splines, while SQP is used for rapid local refinements. The developed method CSM-GASQP for different lengths of the splines is applied effectively to solve the Thomas-Fermi equation for number of scenarios. Results show that proposed evolutionary paradigm CSM-GASQP is an effective, alternate, accurate, and reliable stochastic numerical solver for stiff nonlinear singular Thomas-Fermi systems.
引用
收藏
页数:29
相关论文
共 78 条
[11]   Cubic quasi-interpolation spline collocation method for solving convection-diffusion equations [J].
Bouhiri, S. ;
Lamnii, A. ;
Lamnii, M. .
MATHEMATICS AND COMPUTERS IN SIMULATION, 2019, 164 :33-45
[12]   Cartan frames and algebras with links to integrable systems differential equations and surfaces [J].
Bracken, Paul .
JOURNAL OF MATHEMATICAL PHYSICS, 2018, 59 (02)
[13]   Thomas-Fermi equation solution by the differential analyzer [J].
Bush, V ;
Caldwell, SH .
PHYSICAL REVIEW, 1931, 38 (10) :1898-1902
[14]   The maximal negative ion of the time-dependent Thomas-Fermi and the Vlasov atom [J].
Chen, Li ;
Siedentop, Heinz .
JOURNAL OF MATHEMATICAL PHYSICS, 2018, 59 (05)
[15]   THOMAS-FERMI MOLECULAR-DYNAMICS [J].
CLEROUIN, J ;
POLLOCK, EL ;
ZERAH, G .
PHYSICAL REVIEW A, 1992, 46 (08) :5130-5137
[16]   Thomas-Fermi model in Rindler space [J].
Das, Sanchita ;
Ghosh, Sutapa ;
Chakrabarty, Somenath .
MODERN PHYSICS LETTERS A, 2017, 32 (33)
[17]   Thomas-Fermi and Thomas-Fermi-Dirac models in two-dimension - Effect of strong quantizing magnetic field [J].
De, Sanchari ;
Chakrabarty, Somenath .
EUROPEAN PHYSICAL JOURNAL D, 2017, 71 (01)
[18]   Fermi, Majorana and the statistical model of atoms [J].
Di Grezia, E ;
Esposito, S .
FOUNDATIONS OF PHYSICS, 2004, 34 (09) :1431-1450
[19]   Majorana solution of the Thomas-Fermi equation [J].
Esposito, S .
AMERICAN JOURNAL OF PHYSICS, 2002, 70 (08) :852-856
[20]   Majorana transformation for differential equations [J].
Esposito, S .
INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2002, 41 (12) :2417-2426