Quantum differentials and the q-monopole revisited

被引:26
作者
Brzezinski, T [1 ]
Majid, S
机构
[1] Univ York, Dept Math, York YO1 5DD, N Yorkshire, England
[2] Univ Cambridge, Dept Appl Math & Theoret Phys, Cambridge CB3 9EW, England
关键词
q-monopole; quantum group; quantum sphere; quantum bundle; differentials;
D O I
10.1023/A:1006053806824
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The q-monopole bundle introduced previously is extended to a general construction for quantum group bundles with nonuniversal differential calculi. We show that the theory applies to several other classes of bundles as well, including bicrossproduct quantum groups, the quantum double and combinatorial bundles associated with covers of compact manifolds.
引用
收藏
页码:185 / 232
页数:48
相关论文
共 40 条
[1]  
[Anonymous], 1972, Elements of mathematics. Commutative algebra
[2]   Finite group factorizations and braiding [J].
Beggs, EJ ;
Gould, JD ;
Majid, S .
JOURNAL OF ALGEBRA, 1996, 181 (01) :112-151
[3]   Coalgebra bundles [J].
Brzezinski, T ;
Majid, S .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1998, 191 (02) :467-492
[4]   QUANTUM GROUP GAUGE-THEORY ON QUANTUM SPACES [J].
BRZEZINSKI, T ;
MAJID, S .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1993, 157 (03) :591-638
[5]  
Brzezinski T, 1996, J GEOM PHYS, V20, P347
[6]  
BRZEZINSKI T, 1994, THESIS CAMBRIDGE
[7]   The quantum 2-sphere as a complex quantum manifold [J].
Chu, CS ;
Ho, PM ;
Zumino, B .
ZEITSCHRIFT FUR PHYSIK C-PARTICLES AND FIELDS, 1996, 70 (02) :339-344
[8]  
Connes A., 1995, NONCOMMUTATIVE GEOME
[9]   DISCRETE DIFFERENTIAL-CALCULUS - GRAPHS, TOPOLOGIES, AND GAUGE-THEORY [J].
DIMAKIS, A ;
MULLERHOISSEN, F .
JOURNAL OF MATHEMATICAL PHYSICS, 1994, 35 (12) :6703-6735
[10]  
Drinfeld V., 1986, P ICM BERK AM MATH S