Multi-physics continuum modelling approaches for metal powder additive manufacturing: a review

被引:18
|
作者
Srivastava, Shekhar [1 ]
Garg, Rajiv Kumar [1 ]
Sharma, Vishal S. [2 ]
Alba-Baena, Noe Gaudencio [3 ]
Sachdeva, Anish [1 ]
Chand, Ramesh [1 ]
Singh, Sehijpal [4 ]
机构
[1] Dr BR Ambedkar Natl Inst Technol, Dept Ind & Prod Engn, Jalandhar, Punjab, India
[2] Univ Witwatersrand, Sch Mech Ind & Aeronaut Engn, Johannesburg, South Africa
[3] Univ Autonoma Ciudad Juarez, Dept Ind Engn & Mfg, Juarez, Mexico
[4] Guru Nanak Dev Engn Coll, Dept Mech Engn, Ludhiana, Punjab, India
关键词
Additive manufacturing; FEM; Residual stress; Numerical modelling; Metal additive manufacturing; PBF; Rapid manufacturing; Computational model; Numerical simulation; Distortion; DEM; Powders; FINITE-ELEMENT-ANALYSIS; PLASTIC STRAIN METHODS; STAINLESS-STEEL; 316L; PHASE-FIELD MODEL; RESIDUAL-STRESS; BED FUSION; MECHANICAL-PROPERTIES; HEAT-TRANSFER; NUMERICAL-SIMULATION; COMPUTER-SIMULATION;
D O I
10.1108/RPJ-07-2019-0189
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Purpose This paper aims to present a systematic approach in the literature survey related to metal additive manufacturing (AM) processes and its multi-physics continuum modelling approach for its better understanding. Design/methodology/approach A systematic review of the literature available in the area of continuum modelling practices adopted for the powder bed fusion (PBF) AM processes for the deposition of powder layer over the substrate along with quantification of residual stress and distortion. Discrete element method (DEM) and finite element method (FEM) approaches have been reviewed for the deposition of powder layer and thermo-mechanical modelling, respectively. Further, thermo-mechanical modelling adopted for the PBF AM process have been discussed in detail with its constituents. Finally, on the basis of prediction through thermo-mechanical models and experimental validation, distortion mitigation/minimisation techniques applied in PBF AM processes have been reviewed to provide a future direction in the field. Findings The findings of this paper are the future directions for the implementation and modification of the continuum modelling approaches applied to PBF AM processes. On the basis of the extensive review in the domain, gaps are recommended for future work for the betterment of modelling approach. Originality/value This paper presents an extensive review of the FEM approach adopted for the prediction of residual stress and distortion in the PBF AM processes which sets the platform for the development of distortion mitigation techniques. An extensive review of distortion mitigation techniques has been presented in the last section of the paper, which has not been reviewed yet.
引用
收藏
页码:737 / 764
页数:28
相关论文
共 50 条
  • [31] Particle scale modelling of powder recoating and melt pool dynamics in laser powder bed fusion additive manufacturing: A review
    Li, Erlei
    Zhou, Zongyan
    Wang, Lin
    Zou, Ruiping
    Yu, Aibing
    POWDER TECHNOLOGY, 2022, 409
  • [32] A multi-physics material point method for thermo-fluid-solid coupling problems in metal additive manufacturing processes
    Lian, Yanping
    Chen, Jiawei
    Li, Ming-Jian
    Gao, Ruxin
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2023, 416
  • [33] A review of powder additive manufacturing processes for metallic biomaterials
    Harun, W. S. W.
    Kamariah, M. S. I. N.
    Muhamad, N.
    Ghani, S. A. C.
    Ahmad, F.
    Mohamed, Z.
    POWDER TECHNOLOGY, 2018, 327 : 128 - 151
  • [34] Multi-physics modeling of side roughness generation mechanisms in powder bed fusion
    Wu, Chaochao
    Zafar, Muhammad Qasim
    Zhao, Haiyan
    Wang, You
    Schoeler, Christoph
    Heinigk, Christian
    Niessen, Markus
    Schulz, Wolfgang
    ADDITIVE MANUFACTURING, 2021, 47
  • [35] Multi-material model for the simulation of powder bed fusion additive manufacturing
    Kling, Vera E.
    Scherr, Robert
    Markl, Matthias
    Ko, Carolin
    COMPUTATIONAL MATERIALS SCIENCE, 2021, 194
  • [36] Process parameter optimization of metal additive manufacturing: a review and outlook
    Chia, Hou Yi
    Wu, Jianzhao
    Wang, Xinzhi
    Yan, Wentao
    JOURNAL OF MATERIALS INFORMATICS, 2022, 2 (04):
  • [37] Computational Simulations of Metal Additive Manufacturing Processes: An Introductory Review
    Farias, Rodrigo Martins
    Vilarinho, Louriel Oliveira
    SOLDAGEM & INSPECAO, 2022, 27
  • [38] Monitoring, Modeling, and Statistical Analysis in Metal Additive Manufacturing: A Review
    Johnson, Grant A.
    Dolde, Matthew M.
    Zaugg, Jonathan T.
    Quintana, Maria J.
    Collins, Peter C.
    MATERIALS, 2024, 17 (23)
  • [39] Multi-physics coupling in thermoacoustic devices: A review
    Chen, Geng
    Tang, Lihua
    Mace, Brian
    Yu, Zhibin
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2021, 146
  • [40] Review on Computational Modeling of Process-Microstructure-Property Relationships in Metal Additive Manufacturing
    Gatsos, Theofilos
    Elsayed, Karim A.
    Zhai, Yuwei
    Lados, Diana A.
    JOM, 2020, 72 (01) : 403 - 419