Predicting high-performance concrete compressive strength using features constructed by Kaizen Programming
被引:7
作者:
de Melo, Vinicius Veloso
论文数: 0引用数: 0
h-index: 0
机构:
Univ Fed Sao Paulo, Inst Sci & Technol, Sao Jose Dos Campos, SP, BrazilUniv Fed Sao Paulo, Inst Sci & Technol, Sao Jose Dos Campos, SP, Brazil
de Melo, Vinicius Veloso
[1
]
Banzhaf, Wolfgang
论文数: 0引用数: 0
h-index: 0
机构:
Mem Univ Newfoundland, Dept Comp Sci, St John, NF A1B 3X5, CanadaUniv Fed Sao Paulo, Inst Sci & Technol, Sao Jose Dos Campos, SP, Brazil
Banzhaf, Wolfgang
[2
]
机构:
[1] Univ Fed Sao Paulo, Inst Sci & Technol, Sao Jose Dos Campos, SP, Brazil
[2] Mem Univ Newfoundland, Dept Comp Sci, St John, NF A1B 3X5, Canada
来源:
2015 BRAZILIAN CONFERENCE ON INTELLIGENT SYSTEMS (BRACIS 2015)
|
2015年
关键词:
Kaizen Programming;
Prediction;
Linear regression;
High performance concrete;
Compressive strength;
ARTIFICIAL NEURAL-NETWORKS;
D O I:
10.1109/BRACIS.2015.56
中图分类号:
TP18 [人工智能理论];
学科分类号:
081104 ;
0812 ;
0835 ;
1405 ;
摘要:
The compressive strength of high-performance concrete (HPC) can be predicted by a nonlinear function of the proportions of its components. However, HPC is a complex material, and finding that nonlinear function is not trivial. Many distinct techniques such as traditional statistical regression methods and machine learning methods have been used to solve this task, reaching considerably different levels of accuracy. In this paper, we employ the recently proposed Kaizen Programming coupled with classical Ordinary Least Squares (OLS) regression to find high-quality nonlinear combinations of the original features, resulting in new sets of features. Those new features are then tested with various regression techniques to perform prediction. Experimental results show that the features constructed by our technique provide significantly better results than the original ones. Moreover, when compared to similar evolutionary approaches, Kaizen Programming builds only a small fraction of the number of prediction models, but reaches similar or better results.
机构:
Univ Nova Lisboa, ISEGI, P-1070312 Lisbon, Portugal
Univ Tecn Lisboa, IST, INESC ID, P-1000029 Lisbon, PortugalUniv Nova Lisboa, ISEGI, P-1070312 Lisbon, Portugal
Castelli, Mauro
Vanneschi, Leonardo
论文数: 0引用数: 0
h-index: 0
机构:
Univ Nova Lisboa, ISEGI, P-1070312 Lisbon, Portugal
Univ Tecn Lisboa, IST, INESC ID, P-1000029 Lisbon, PortugalUniv Nova Lisboa, ISEGI, P-1070312 Lisbon, Portugal
Vanneschi, Leonardo
Silva, Sara
论文数: 0引用数: 0
h-index: 0
机构:
Univ Tecn Lisboa, IST, INESC ID, P-1000029 Lisbon, PortugalUniv Nova Lisboa, ISEGI, P-1070312 Lisbon, Portugal
机构:
Fed Univ Sao Paulo UNIFESP, Inst Sci & Technol ICT, Sao Jose Dos Campos, SP, BrazilFed Univ Sao Paulo UNIFESP, Inst Sci & Technol ICT, Sao Jose Dos Campos, SP, Brazil
de Melo, Vinicius Veloso
[J].
GECCO'14: PROCEEDINGS OF THE 2014 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE,
2014,
: 895
-
902
机构:
Univ Nova Lisboa, ISEGI, P-1070312 Lisbon, Portugal
Univ Tecn Lisboa, IST, INESC ID, P-1000029 Lisbon, PortugalUniv Nova Lisboa, ISEGI, P-1070312 Lisbon, Portugal
Castelli, Mauro
Vanneschi, Leonardo
论文数: 0引用数: 0
h-index: 0
机构:
Univ Nova Lisboa, ISEGI, P-1070312 Lisbon, Portugal
Univ Tecn Lisboa, IST, INESC ID, P-1000029 Lisbon, PortugalUniv Nova Lisboa, ISEGI, P-1070312 Lisbon, Portugal
Vanneschi, Leonardo
Silva, Sara
论文数: 0引用数: 0
h-index: 0
机构:
Univ Tecn Lisboa, IST, INESC ID, P-1000029 Lisbon, PortugalUniv Nova Lisboa, ISEGI, P-1070312 Lisbon, Portugal
机构:
Fed Univ Sao Paulo UNIFESP, Inst Sci & Technol ICT, Sao Jose Dos Campos, SP, BrazilFed Univ Sao Paulo UNIFESP, Inst Sci & Technol ICT, Sao Jose Dos Campos, SP, Brazil
de Melo, Vinicius Veloso
[J].
GECCO'14: PROCEEDINGS OF THE 2014 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE,
2014,
: 895
-
902