Normality criteria of meromorphic functions sharing one value

被引:12
作者
Meng, Da-Wei [1 ]
Hu, Pei-Chu [1 ]
机构
[1] Shandong Univ, Dept Math, Jinan 250100, Shandong, Peoples R China
关键词
Meromorphic functions; Normal family; Sharing values; NORMAL-FAMILIES; PRINCIPLE; HAYMAN;
D O I
10.1016/j.jmaa.2011.03.040
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let k be a positive integer and. a family of meromorphic functions in a domain D subset of C such that each f is an element of F has only zeros of multiplicity at least k + 1. If for each pair (f, g) in F, f f((k)) and g g((k)) share a non-zero complex number a ignoring multiplicity, then F is normal in D. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:724 / 731
页数:8
相关论文
共 38 条
  • [1] Alotaibi A., 2004, Comput. Methods Funct. Theory, V4, P227, DOI [10.1007/BF03321066, DOI 10.1007/BF03321066]
  • [2] [Anonymous], 1978, SCI SINICA A
  • [3] Bergweiler W., 2006, Comput. Methods Funct. Theory, V6, P77, DOI [10.1007/BF03321119, DOI 10.1007/BF03321119]
  • [4] Bergweiler W, 1995, REV MAT IBEROAM, V11, P355
  • [5] Chen H. H., 1993, Science in China Ser. A, V36, P674
  • [6] CHEN HH, 1995, SCI CHINA SER A, V38, P789
  • [7] CLUNIE J, 1967, J LONDON MATH SOC, V42, P389
  • [8] Clunie J., 1962, J LOND MATH SOC, V37, P17
  • [9] NORMAL FAMILIES AND NEVANLINNA THEORY
    DRASIN, D
    [J]. ACTA MATHEMATICA UPPSALA, 1969, 122 (3-4): : 231 - &
  • [10] Hayman W. K., 1967, Research Problems in Function Theory