The stationary distribution of a microorganism flocculation model with stochastic perturbation

被引:19
作者
Zhang, Haisu [1 ]
Zhang, Tongqian [1 ,2 ]
机构
[1] Shandong Univ Sci & Technol, Coll Math & Syst Sci, Qingdao 266590, Peoples R China
[2] Shandong Univ Sci & Technol, State Key Lab Min Disaster Prevent & Control Shan, Qingdao 266590, Peoples R China
关键词
Flocculation; Stationary distribution; Threshold;
D O I
10.1016/j.aml.2020.106217
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we develop a microorganism flocculation model by introducing white noise into the model. By constructing a proper Lyapunov function, we prove that there is a stationary distribution. Moreover, we get the threshold similar to deterministic system. (C) 2020 Elsevier Ltd. All rights reserved.
引用
收藏
页数:8
相关论文
共 13 条
  • [1] Emergence of coexistence and limit cycles in the chemostat model with flocculation for a general class of functional responses
    Fekih-Salem, R.
    Rapaport, A.
    Sari, T.
    [J]. APPLIED MATHEMATICAL MODELLING, 2016, 40 (17-18) : 7656 - 7677
  • [2] Global Dynamics of a Time-Delayed Microorganism Flocculation Model with Saturated Functional Responses
    Guo, Songbai
    Ma, Wanbiao
    Zhao, Xiao-Qiang
    [J]. JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2018, 30 (03) : 1247 - 1271
  • [3] The stationary distribution of hepatitis B virus with stochastic perturbation
    Ji, Chunyan
    [J]. APPLIED MATHEMATICS LETTERS, 2020, 100
  • [4] Khasminskii R, 2012, STOCH MOD APPL PROBA, V66, P1, DOI 10.1007/978-3-642-23280-0
  • [5] Microbial flocculation by Bacillus mucilaginosus:: Applications and mechanisms
    Lian, Bin
    Chen, Ye
    Zhao, Jin
    Teng, H. Henry
    Zhu, Lijun
    Yuan, Sheng
    [J]. BIORESOURCE TECHNOLOGY, 2008, 99 (11) : 4825 - 4831
  • [6] Stationary distribution and extinction of a stochastic predator-prey model with distributed delay
    Liu, Qun
    Jiang, Daqing
    [J]. APPLIED MATHEMATICS LETTERS, 2018, 78 : 79 - 87
  • [7] Nontrivial periodic solution of a stochastic non-autonomous model with biodegradation of microcystins
    Song, Keying
    Zhang, Tonghua
    Ma, Wanbiao
    [J]. APPLIED MATHEMATICS LETTERS, 2019, 94 : 87 - 93
  • [8] Tai X., 2015, Mathametics in Practice and Theory, V13, P198
  • [9] PURIFICATION AND CHEMICAL-PROPERTIES OF A FLOCCULANT PRODUCED BY PAECILOMYCES
    TAKAGI, H
    KADOWAKI, K
    [J]. AGRICULTURAL AND BIOLOGICAL CHEMISTRY, 1985, 49 (11): : 3159 - 3164
  • [10] Global dynamics of a model for treating microorganisms in sewage by periodically adding microbial flocculants
    Zhang, Tongqian
    Gao, Ning
    Wang, Tengfei
    Liu, Hongxia
    Jiang, Zhichao
    [J]. MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2020, 17 (01) : 179 - 201