A role for Arabidopsis cryptochromes and COP1 in the regulation of stomatal opening

被引:306
作者
Mao, J
Zhang, YC
Sang, Y
Li, QH
Yang, HQ
机构
[1] Chinese Acad Sci, Shanghai Inst Biol Sci, Natl Key Lab Plant Mol Genet, Inst Plant Physiol & Ecol, Shanghai 200032, Peoples R China
[2] Chinese Acad Sci, Grad Sch, Shanghai 200032, Peoples R China
关键词
blue light photoreceptor; phototropin; water evaporation; photosynthesis;
D O I
10.1073/pnas.0501011102
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Cryptochromes (CRY) are blue light photoreceptors that mediate various light-induced responses in plants and animals. Arabidopsis CRY (CRY1 and CRY2) functions through negatively regulating constitutive photomorphogenic (COP) 1, a repressor of photomorphogenesis. Water evaporation and photosynthesis are regulated by the stomatal pores in plants, which are closed in darkness but open in response to blue light. There is evidence only for the phototropin blue light receptors (PHOT1 and PHOT2) in mediating blue light regulation of stomatal opening. Here, we report a previously uncharacterized role for Arabidopsis CRY and CON in the regulation of stomatal opening. Stomata of the cry1 cry2 double mutant showed reduced blue light response, whereas those of the CRY1-overexpressing plants showed hypersensitive response to blue light. In addition, stomata of the phot1 phot2 double mutant responded to blue light, but those of the cry1 cry2 phot1 phot2 quadruple mutant hardly responded. Strikingly, stomata of the cop1 mutant were constitutively open in darkness and stomata of the cry1 cry2 cop1 and phot1 phot2 cop1 triple mutants were open as wide as those of the cop1 single mutant under blue light. These results indicate that CRY functions additively with PHOT in mediating blue light-induced stomatal opening and that CON is a repressor of stomatal opening and likely acts downstream of CRY and PHOT signaling pathways.
引用
收藏
页码:12270 / 12275
页数:6
相关论文
共 38 条
[1]   Chimeric proteins between cry1 and cry2 Arabidopsis blue light photoreceptors indicate overlapping functions and varying protein stability [J].
Ahmad, M ;
Jarillo, JA ;
Cashmore, AR .
PLANT CELL, 1998, 10 (02) :197-207
[2]   HY4 GENE OF A-THALIANA ENCODES A PROTEIN WITH CHARACTERISTICS OF A BLUE-LIGHT PHOTORECEPTOR [J].
AHMAD, M ;
CASHMORE, AR .
NATURE, 1993, 366 (6451) :162-166
[3]   REGULATORY HIERARCHY OF PHOTOMORPHOGENIC LOCI - ALLELE-SPECIFIC AND LIGHT-DEPENDENT INTERACTION BETWEEN THE HY5 AND COP1 LOCI [J].
ANG, LH ;
DENG, XW .
PLANT CELL, 1994, 6 (05) :613-628
[4]   From milliseconds to millions of years: guard cells and environmental responses [J].
Assmann, SM ;
Wang, XQ .
CURRENT OPINION IN PLANT BIOLOGY, 2001, 4 (05) :421-428
[5]  
Bagnall DJ, 1996, PLANTA, V200, P278, DOI 10.1007/BF00208319
[6]   Cellular signaling and volume control in stomatal movements in plants [J].
Blatt, MR .
ANNUAL REVIEW OF CELL AND DEVELOPMENTAL BIOLOGY, 2000, 16 :221-241
[7]   COP1, AN ARABIDOPSIS REGULATORY GENE, ENCODES A PROTEIN WITH BOTH A ZINC-BINDING MOTIF AND A G-BETA HOMOLOGOUS DOMAIN [J].
DENG, XW ;
MATSUI, M ;
WEI, N ;
WAGNER, D ;
CHU, AM ;
FELDMANN, KA ;
QUAIL, PH .
CELL, 1992, 71 (05) :791-801
[8]   The role of ion channels in light-dependent stomatal opening [J].
Dietrich, P ;
Sanders, D ;
Hedrich, R .
JOURNAL OF EXPERIMENTAL BOTANY, 2001, 52 (363) :1959-1967
[9]   Unexpected roles for cryptochrome 2 and phototropin revealed by high-resolution analysis of blue light-mediated hypocotyl growth inhibition [J].
Folta, KM ;
Spalding, EP .
PLANT JOURNAL, 2001, 26 (05) :471-478
[10]   Regulations of flowering time by Arabidopsis photoreceptors [J].
Guo, HW ;
Yang, WY ;
Mockler, TC ;
Lin, CT .
SCIENCE, 1998, 279 (5355) :1360-1363