Blind submarine seismic deconvolution for long source wavelets

被引:10
作者
Nsiri, Benayad [1 ,2 ,3 ]
Chonavel, Thierry [4 ]
Boucher, Jean-Marc [4 ,5 ]
Nouze, Herve [6 ]
机构
[1] Univ Hassan 2, Dept Phys, Ain Chock Fac Sci, Casablanca 20101, Morocco
[2] Lab Rech Informat & Teelcommunicat, Grp Signaux Commun & Multimedia, Rabat, Morocco
[3] Ecole Natl Super Telecommun Bretagne, F-29200 Brest, France
[4] Ecole Natl Super Telecommun Bretagne, Dept Signal & Commun, F-29200 Brest, France
[5] Natl Sci Res Ctr Lab, Traitement Algorithm & Mat Commun Informat & Conn, UMR 2872, F-29238 Brest, France
[6] IFREMER, Ctr Brest, Marine Geosci Dept, F-29280 Plouzane, France
关键词
Bernoulli-Gaussian (BG) process; blind deconvolution; Gibbs sampler; maximum likelihood (ML); maximum posterior mode (MPM); Monte Carlo Markov chains (MCMCs) methods; Prony algorithm; seismic deconvolution; stochastic expectation-maximization (SEM);
D O I
10.1109/JOE.2007.899408
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
In seismic deconvolution, blind approaches must be considered in situations where reflectivity sequence, source wavelet signal, and noise power level are unknown. In the presence of long source wavelets, strong interference among the reflectors contributions makes the wavelet estimation and deconvolution more complicated. In this paper, we solve this problem in a two-step approach. First, we estimate a moving average (MA) truncated version of the wavelet by means of a stochastic expectation-maximization (SEM) algorithm. Then, we use Prony's method to improve the wavelet estimation accuracy by fitting an autoregressive moving average (ARMA) model with the initial truncated wavelet. Moreover, a solution to the wavelet initialization problem in the SEM algorithm is also proposed. Simulation and real-data experiment results show the significant improvement brought by this approach.
引用
收藏
页码:729 / 743
页数:15
相关论文
共 38 条
[11]   MAXIMUM LIKELIHOOD FROM INCOMPLETE DATA VIA EM ALGORITHM [J].
DEMPSTER, AP ;
LAIRD, NM ;
RUBIN, DB .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-METHODOLOGICAL, 1977, 39 (01) :1-38
[12]  
DONOHO DL, 1981, APPL TIME SERIES ANA, P556
[13]   Bayesian estimation of state-space models applied to deconvolution of Bernoulli-Gaussian processes [J].
Doucet, A ;
Duvaut, P .
SIGNAL PROCESSING, 1997, 57 (02) :147-161
[14]  
FARCY P, 1999, DNISESIENSDTI99007
[15]   PARAMETER-ESTIMATION OF SUPERIMPOSED SIGNALS USING THE EM ALGORITHM [J].
FEDER, M ;
WEINSTEIN, E .
IEEE TRANSACTIONS ON ACOUSTICS SPEECH AND SIGNAL PROCESSING, 1988, 36 (04) :477-489
[16]   SAMPLING-BASED APPROACHES TO CALCULATING MARGINAL DENSITIES [J].
GELFAND, AE ;
SMITH, AFM .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1990, 85 (410) :398-409
[17]   STOCHASTIC RELAXATION, GIBBS DISTRIBUTIONS, AND THE BAYESIAN RESTORATION OF IMAGES [J].
GEMAN, S ;
GEMAN, D .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1984, 6 (06) :721-741
[18]  
Gilks, 1996, MARKOV CHAIN MONTE C, V1, P19, DOI DOI 10.1201/B14835
[19]   MULTICHANNEL SEISMIC DECONVOLUTION [J].
IDIER, J ;
GOUSSARD, Y .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 1993, 31 (05) :961-979
[20]   Deconvolution of sparse spike trains by iterated window maximization [J].
Kaaresen, KF .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1997, 45 (05) :1173-1183