Radiogenomic analysis reveals tumor heterogeneity of triple-negative breast cancer

被引:79
作者
Jiang, Lin [1 ]
You, Chao [2 ]
Xiao, Yi [1 ]
Wang, He [3 ]
Su, Guan-Hua [1 ]
Xia, Bing-Qing [4 ]
Zheng, Ren-Cheng [3 ]
Zhang, Dan-Dan [2 ]
Jiang, Yi-Zhou [1 ]
Gu, Ya-Jia [2 ]
Shao, Zhi-Ming [1 ]
机构
[1] Fudan Univ, Fudan Univ Shanghai Canc Ctr, Shanghai Med Coll, Key Lab Breast Canc Shanghai,Dept Breast Surg,Dept, 270 Dongan Rd, Shanghai 200032, Peoples R China
[2] Fudan Univ, Fudan Univ Shanghai Canc Ctr, Shanghai Med Coll, Dept Radiol,Dept Oncol, 270 Dongan Rd, Shanghai 200032, Peoples R China
[3] Fudan Univ, Inst Sci & Technol Brain Inspired Intelligence, Shanghai 201203, Peoples R China
[4] Shanghai Jiao Tong Univ, Int Peace Matern & Child Hlth Hosp, Dept Radiol, China Welf Inst, Shanghai 200030, Peoples R China
基金
中国国家自然科学基金;
关键词
SURVIVAL; SUBTYPES; MODELS;
D O I
10.1016/j.xcrm.2022.100694
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Triple-negative breast cancer (TNBC) is a subset of breast cancer with an adverse prognosis and significant tumor heterogeneity. Here, we extract quantitative radiomic features from contrast-enhanced magnetic reso-nance images to construct a breast cancer radiomic dataset (n = 860) and a TNBC radiogenomic dataset (n = 202). We develop and validate radiomic signatures that can fairly differentiate TNBC from other breast cancer subtypes and distinguish molecular subtypes within TNBC. A radiomic feature that captures peritumoral het-erogeneity is determined to be a prognostic factor for recurrence-free survival (p = 0.01) and overall survival (p = 0.004) in TNBC. Combined with the established matching TNBC transcriptomic and metabolomic data, we demonstrate that peritumoral heterogeneity is associated with immune suppression and upregulated fatty acid synthesis in tumor samples. Collectively, this multi-omic dataset serves as a useful public resource to promote precise subtyping of TNBC and helps to understand the biological significance of radiomics.
引用
收藏
页数:17
相关论文
共 47 条
[1]   Characterization of the immunophenotypes and antigenomes of colorectal cancers reveals distinct tumor escape mechanisms and novel targets for immunotherapy [J].
Angelova, Mihaela ;
Charoentong, Pornpimol ;
Hackl, Hubert ;
Fischer, Maria L. ;
Snajder, Rene ;
Krogsdam, Anne M. ;
Waldner, Maximilian J. ;
Bindea, Gabriela ;
Mlecnik, Bernhard ;
Galon, Jerome ;
Trajanoski, Zlatko .
GENOME BIOLOGY, 2015, 16
[2]   Symmetric diffeomorphic image registration with cross-correlation: Evaluating automated labeling of elderly and neurodegenerative brain [J].
Avants, B. B. ;
Epstein, C. L. ;
Grossman, M. ;
Gee, J. C. .
MEDICAL IMAGE ANALYSIS, 2008, 12 (01) :26-41
[3]   Artificial intelligence in cancer imaging: Clinical challenges and applications [J].
Bi, Wenya Linda ;
Hosny, Ahmed ;
Schabath, Matthew B. ;
Giger, Maryellen L. ;
Birkbak, Nicolai J. ;
Mehrtash, Alireza ;
Allison, Tavis ;
Arnaout, Omar ;
Abbosh, Christopher ;
Dunn, Ian F. ;
Mak, Raymond H. ;
Tamimi, Rulla M. ;
Tempany, Clare M. ;
Swanton, Charles ;
Hoffmann, Udo ;
Schwartz, Lawrence H. ;
Gillies, Robert J. ;
Huang, Raymond Y. ;
Aerts, Hugo J. W. L. .
CA-A CANCER JOURNAL FOR CLINICIANS, 2019, 69 (02) :127-157
[4]   Intratumoral and peritumoral radiomics for the pretreatment prediction of pathological complete response to neoadjuvant chemotherapy based on breast DCE-MRI [J].
Braman, Nathaniel M. ;
Etesami, Maryam ;
Prasanna, Prateek ;
Dubchuk, Christina ;
Gilmore, Hannah ;
Tiwari, Pallavi ;
Pletcha, Donna ;
Madabhushi, Anant .
BREAST CANCER RESEARCH, 2017, 19
[5]   Comprehensive Genomic Analysis Identifies Novel Subtypes and Targets of Triple-Negative Breast Cancer [J].
Burstein, Matthew D. ;
Tsimelzon, Anna ;
Poage, Graham M. ;
Coyington, Kyle R. ;
Contreras, Alejandro ;
Fuqua, Suzanne A. W. ;
Sayage, Michelle I. ;
Osborne, C. Kent ;
Hilsenbeck, Susan G. ;
Chang, Jenny C. ;
Mills, Gordon B. ;
Lau, Ching C. ;
Brown, Powel H. .
CLINICAL CANCER RESEARCH, 2015, 21 (07) :1688-1698
[6]   The Impact of Normalization Approaches to Automatically Detect Radiogenomic Phenotypes Characterizing Breast Cancer Receptors Status [J].
Castaldo, Rossana ;
Pane, Katia ;
Nicolai, Emanuele ;
Salvatore, Marco ;
Franzese, Monica .
CANCERS, 2020, 12 (02)
[7]   Understanding the biology of triple-negative breast cancer [J].
Criscitiello, C. ;
Azim, H. A., Jr. ;
Schouten, P. C. ;
Linn, S. C. ;
Sotiriou, C. .
ANNALS OF ONCOLOGY, 2012, 23 :13-18
[8]   Tumour heterogeneity and resistance to cancer therapies [J].
Dagogo-Jack, Ibiayi ;
Shaw, Alice T. .
NATURE REVIEWS CLINICAL ONCOLOGY, 2018, 15 (02) :81-94
[9]   Molecular alterations in triple-negative breast cancer-the road to new treatment strategies [J].
Denkert, Carsten ;
Liedtke, Cornelia ;
Tutt, Andrew ;
von Minckwitz, Gunter .
LANCET, 2017, 389 (10087) :2430-2442
[10]   Peritumoral radiomics features predict distant metastasis in locally advanced NSCLC [J].
Dou, Tai H. ;
Coroller, Thibaud P. ;
van Griethuysen, Joost J. M. ;
Mak, Raymond H. ;
Aerts, Hugo J. W. L. .
PLOS ONE, 2018, 13 (11)