Mechanical annealing and source-limited deformation in submicrometre-diameter Ni crystals

被引:762
作者
Shan, Z. W. [1 ,2 ]
Mishra, Raja K. [3 ]
Asif, S. A. Syed [2 ]
Warren, Oden L. [2 ]
Minor, Andrew M. [1 ]
机构
[1] Univ Calif Berkeley, Lawrence Berkeley Lab, Natl Ctr Electron Microscopy, Berkeley, CA 94720 USA
[2] Hysitron Inc, Minneapolis, MN 55344 USA
[3] GM Corp, Ctr Res & Dev, Warren, MI 48090 USA
关键词
D O I
10.1038/nmat2085
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The fundamental processes that govern plasticity and determine strength in crystalline materials at small length scales have been studied for over fifty years(1-3). Recent studies of single-crystal metallic pillars with diameters of a few tens of micrometres or less have clearly demonstrated that the strengths of these pillars increase as their diameters decrease(4-7), leading to attempts to augment existing ideas about pronounced size effects(8,9) with new models and simulations(10-17). Through in situ nanocompression experiments inside a transmission electron microscope we can directly observe the deformation of these pillar structures and correlate the measured stress values with discrete plastic events. Our experiments show that submicrometre nickel crystals microfabricated into pillar structures contain a high density of initial defects after processing but can be made dislocation free by applying purely mechanical stress. This phenomenon, termed 'mechanical annealing', leads to clear evidence of source-limited deformation where atypical hardening occurs through the progressive activation and exhaustion of dislocation sources.
引用
收藏
页码:115 / 119
页数:5
相关论文
共 26 条