Autonomous chemical science and engineering enabled by self-driving laboratories

被引:31
作者
Bennett, Jeffrey A. [1 ]
Abolhasani, Milad [1 ]
机构
[1] North Carolina State Univ, Dept Chem & Biomol Engn, Raleigh, NC 27695 USA
基金
美国国家科学基金会;
关键词
AUTOMATED OPTIMIZATION; CHEMISTRY; MODEL; PREDICTION; DISCOVERY;
D O I
10.1016/j.coche.2022.100831
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Recent advances in machine learning (ML) and artificial intelligence have provided an exciting opportunity to computerize the fundamental and applied studies of complex reaction systems via self-driving laboratories. Autonomous robotic experimentation can enable time-, material-, and resource-efficient exploration and/or optimization of high-dimensional space reaction systems. Furthermore, interpretation of the ML models trained on the experimental data can unveil the underlying reaction mechanisms. In this article, we discuss different elements of a self-driving lab, and present recent efforts in autonomous reaction modeling and optimization. Further development and adoption of ML-guided closed-loop experimentation strategies can realize the full potential of autonomous chemical science and engineering to accelerate the discovery and development of advanced materials and molecules.
引用
收藏
页数:10
相关论文
共 51 条
  • [1] Self-Driven Multistep Quantum Dot Synthesis Enabled by Autonomous Robotic Experimentation in Flow
    Abdel-Latif, Kameel
    Epps, Robert W.
    Bateni, Fazel
    Han, Suyong
    Reyes, Kristofer G.
    Abolhasani, Milad
    [J]. ADVANCED INTELLIGENT SYSTEMS, 2021, 3 (02)
  • [2] Oscillatory multiphase flow strategy for chemistry and biology
    Abolhasani, Milad
    Jensen, Klavs F.
    [J]. LAB ON A CHIP, 2016, 16 (15) : 2775 - 2784
  • [3] Oscillatory Microprocessor for Growth and in Situ Characterization of Semiconductor Nanocrystals
    Abolhasani, Milad
    Coley, Connor W.
    Xie, Lisi
    Chen, Ou
    Bawendi, Moungi G.
    Jensen, Klavs F.
    [J]. CHEMISTRY OF MATERIALS, 2015, 27 (17) : 6131 - 6138
  • [4] ANN for hybrid modelling of batch and fed-batch chemical reactors
    Ammar, Yessin
    Cognet, Patrick
    Cabassud, Michel
    [J]. CHEMICAL ENGINEERING SCIENCE, 2021, 237
  • [5] Autonomous Nanocrystal Doping by Self-Driving Fluidic Micro-Processors
    Bateni, Fazel
    Epps, Robert W.
    Antami, Kameel
    Dargis, Rokas
    Bennett, Jeffery A.
    Reyes, Kristofer G.
    Abolhasani, Milad
    [J]. ADVANCED INTELLIGENT SYSTEMS, 2022, 4 (05)
  • [6] Reconfigurable system for automated optimization of diverse chemical reactions
    Bedard, Anne-Catherine
    Adamo, Andrea
    Aroh, Kosi C.
    Russell, M. Grace
    Bedermann, Aaron A.
    Torosian, Jeremy
    Yue, Brian
    Jensen, Klavs F.
    Jamison, Timothy F.
    [J]. SCIENCE, 2018, 361 (6408) : 1220 - +
  • [7] Pick a Color MARIA: Adaptive Sampling Enables the Rapid Identification of Complex Perovskite Nanocrystal Compositions with Defined Emission Characteristics
    Bezinge, Leonard
    Maceiczyk, Richard M.
    Lignos, Ioannis
    Kovalenko, Maksym V.
    deMello, Andrew J.
    [J]. ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (22) : 18869 - 18878
  • [8] Automated self-optimisation of multi-step reaction and separation processes using machine learning
    Clayton, Adam D.
    Schweidtmann, Artur M.
    Clemens, Graeme
    Manson, Jamie A.
    Taylor, Connor J.
    Nino, Carlos G.
    Chamberlain, Thomas W.
    Kapur, Nikil
    Blacker, A. John
    Lapkin, Alexei A.
    Bourne, Richard A.
    [J]. CHEMICAL ENGINEERING JOURNAL, 2020, 384 (384)
  • [9] Autonomous Discovery in the Chemical Sciences Part I: Progress
    Coley, Connor W.
    Eyke, Natalie S.
    Jensen, Klavs F.
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2020, 59 (51) : 22858 - 22893
  • [10] Autonomous Discovery in the Chemical Sciences Part II: Outlook
    Coley, Connor W.
    Eyke, Natalie S.
    Jensen, Klavs F.
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2020, 59 (52) : 23414 - 23436