Global synchronization of partially forced Kuramoto oscillators on networks

被引:29
|
作者
Moreira, Carolina A. [1 ]
de Aguiar, Marcus A. M. [1 ]
机构
[1] Univ Estadual Campinas, UNICAMP, Inst Fis Fis Gleb Wataghin, BR-13083970 Campinas, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
Synchronization; Networks; Kuramoto model; Periodic force; COMPLEX NETWORKS; MODEL;
D O I
10.1016/j.physa.2018.09.096
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the synchronization of Kuramoto oscillators on networks where only a fraction of them is subjected to a periodic external force. When all oscillators receive the external drive the system always synchronize with the periodic force if its intensity is sufficiently large. Our goal is to understand the conditions for global synchronization as a function of the fraction of nodes being forced and how these conditions depend on network topology, strength of internal couplings and intensity of external forcing. Numerical simulations show that the force required to synchronize the network with the external drive increases as the inverse of the fraction of forced nodes. However, for a given coupling strength, synchronization does not occur below a critical fraction, no matter how large is the force. Network topology and properties of the forced nodes also affect the critical force for synchronization. We develop analytical calculations for the critical force for synchronization as a function of the fraction of forced oscillators and for the critical fraction as a function of coupling strength. We also describe the transition from synchronization with the external drive to spontaneous synchronization.(C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:487 / 496
页数:10
相关论文
共 50 条
  • [21] Stability Conditions for Cluster Synchronization in Networks of Heterogeneous Kuramoto Oscillators
    Menara, Tommaso
    Baggio, Giacomo
    Bassett, Danielle S.
    Pasqualetti, Fabio
    IEEE TRANSACTIONS ON CONTROL OF NETWORK SYSTEMS, 2020, 7 (01): : 302 - 314
  • [22] Onset of synchronization of Kuramoto oscillators in scale-free networks
    Peron, Thomas
    de Resende, Bruno Messias F.
    Mata, Angelica S.
    Rodrigues, Francisco A.
    Moreno, Yamir
    PHYSICAL REVIEW E, 2019, 100 (04)
  • [23] Emergence and synchronization of a reversible core in a system of forced adaptively coupled Kuramoto oscillators
    Emelianova, Anastasiia A.
    Nekorkin, Vladimir, I
    CHAOS, 2021, 31 (03)
  • [24] Adaptive Hybrid Control for Robust Global Phase Synchronization of Kuramoto Oscillators
    Bosso, Alessandro
    Azzollini, Ilario A.
    Baldi, Simone
    Zaccarian, Luca
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2024, 69 (12) : 8188 - 8203
  • [25] Uniform global asymptotic synchronization of Kuramoto oscillators via hybrid coupling
    Bertollo, R.
    Panteley, E.
    Postoyan, R.
    Zaccarian, L.
    IFAC PAPERSONLINE, 2020, 53 (02): : 5819 - 5824
  • [26] Synchronization Patterns in Networks of Kuramoto Oscillators: A Geometric Approach for Analysis and Control
    Tiberi, Lorenzo
    Favaretto, Chiara
    Innocenti, Mario
    Bassett, Danielle S.
    Pasqualetti, Fabio
    2017 IEEE 56TH ANNUAL CONFERENCE ON DECISION AND CONTROL (CDC), 2017,
  • [27] Averaging and Cluster Synchronization of Kuramoto Oscillators
    Kato, Rui
    Ishii, Hideaki
    2021 EUROPEAN CONTROL CONFERENCE (ECC), 2021, : 1497 - 1502
  • [28] Statistics of synchronization times in Kuramoto oscillators
    Sinha, Abhisek
    Ghosh, Anandamohan
    EPL, 2023, 141 (05)
  • [29] Linearization error in synchronization of Kuramoto oscillators
    Ghorban, Samira Hossein
    Baharifard, Fatemeh
    Hesaam, Bardyaa
    Zarei, Mina
    Sarbazi-Azad, Hamid
    APPLIED MATHEMATICS AND COMPUTATION, 2021, 411
  • [30] Remarks on the complete synchronization of Kuramoto oscillators
    Ha, Seung-Yeal
    Kim, Hwa Kil
    Park, Jinyeong
    NONLINEARITY, 2015, 28 (05) : 1441 - 1462