Global synchronization of partially forced Kuramoto oscillators on networks

被引:29
作者
Moreira, Carolina A. [1 ]
de Aguiar, Marcus A. M. [1 ]
机构
[1] Univ Estadual Campinas, UNICAMP, Inst Fis Fis Gleb Wataghin, BR-13083970 Campinas, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
Synchronization; Networks; Kuramoto model; Periodic force; COMPLEX NETWORKS; MODEL;
D O I
10.1016/j.physa.2018.09.096
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the synchronization of Kuramoto oscillators on networks where only a fraction of them is subjected to a periodic external force. When all oscillators receive the external drive the system always synchronize with the periodic force if its intensity is sufficiently large. Our goal is to understand the conditions for global synchronization as a function of the fraction of nodes being forced and how these conditions depend on network topology, strength of internal couplings and intensity of external forcing. Numerical simulations show that the force required to synchronize the network with the external drive increases as the inverse of the fraction of forced nodes. However, for a given coupling strength, synchronization does not occur below a critical fraction, no matter how large is the force. Network topology and properties of the forced nodes also affect the critical force for synchronization. We develop analytical calculations for the critical force for synchronization as a function of the fraction of forced oscillators and for the critical fraction as a function of coupling strength. We also describe the transition from synchronization with the external drive to spontaneous synchronization.(C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:487 / 496
页数:10
相关论文
共 36 条
  • [1] The Kuramoto model:: A simple paradigm for synchronization phenomena
    Acebrón, JA
    Bonilla, LL
    Vicente, CJP
    Ritort, F
    Spigler, R
    [J]. REVIEWS OF MODERN PHYSICS, 2005, 77 (01) : 137 - 185
  • [2] STUDY OF LOCKING PHENOMENA IN OSCILLATORS
    ADLER, R
    [J]. PROCEEDINGS OF THE IEEE, 1973, 61 (10) : 1380 - 1385
  • [3] Synchronization and modularity in complex networks
    Arenas, A.
    Diaz-Guilera, A.
    [J]. EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2007, 143 (1) : 19 - 25
  • [4] Synchronization processes in complex networks
    Arenas, Alex
    Diaz-Guilera, Albert
    Perez-Vicente, Conrad J.
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 2006, 224 (1-2) : 27 - 34
  • [5] Synchronization in complex networks
    Arenas, Alex
    Diaz-Guilera, Albert
    Kurths, Jurgen
    Moreno, Yamir
    Zhou, Changsong
    [J]. PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2008, 469 (03): : 93 - 153
  • [6] BUCK J, 1976, SCI AM, V234, P74
  • [7] Stability diagram for the forced Kuramoto model
    Childs, Lauren M.
    Strogatz, Steven H.
    [J]. CHAOS, 2008, 18 (04)
  • [8] The role of rhythmic neural synchronization in rest and task conditions
    Deco, Gustavo
    Buehlmann, Andres
    Masquelier, Timothee
    Hugues, Etienne
    [J]. FRONTIERS IN HUMAN NEUROSCIENCE, 2011, 5 : 1 - 6
  • [9] Ermentrout G. B., 1984, AM J PHYSL, V246
  • [10] Gray C M, 1994, J Comput Neurosci, V1, P11, DOI 10.1007/BF00962716