Global synchronization of partially forced Kuramoto oscillators on networks

被引:29
|
作者
Moreira, Carolina A. [1 ]
de Aguiar, Marcus A. M. [1 ]
机构
[1] Univ Estadual Campinas, UNICAMP, Inst Fis Fis Gleb Wataghin, BR-13083970 Campinas, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
Synchronization; Networks; Kuramoto model; Periodic force; COMPLEX NETWORKS; MODEL;
D O I
10.1016/j.physa.2018.09.096
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the synchronization of Kuramoto oscillators on networks where only a fraction of them is subjected to a periodic external force. When all oscillators receive the external drive the system always synchronize with the periodic force if its intensity is sufficiently large. Our goal is to understand the conditions for global synchronization as a function of the fraction of nodes being forced and how these conditions depend on network topology, strength of internal couplings and intensity of external forcing. Numerical simulations show that the force required to synchronize the network with the external drive increases as the inverse of the fraction of forced nodes. However, for a given coupling strength, synchronization does not occur below a critical fraction, no matter how large is the force. Network topology and properties of the forced nodes also affect the critical force for synchronization. We develop analytical calculations for the critical force for synchronization as a function of the fraction of forced oscillators and for the critical fraction as a function of coupling strength. We also describe the transition from synchronization with the external drive to spontaneous synchronization.(C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:487 / 496
页数:10
相关论文
共 50 条
  • [1] Optimal global synchronization of partially forced Kuramoto oscillators
    Climaco, Joyce S.
    Saa, Alberto
    CHAOS, 2019, 29 (07)
  • [2] Conditions for global synchronization in networks of heterogeneous Kuramoto oscillators
    Mercado-Uribe, Angel
    Mendoza-Avila, Jesus
    Efimov, Denis
    Schiffer, Johannes
    AUTOMATICA, 2025, 175
  • [3] Synchronization of Kuramoto oscillators in dense networks
    Lu, Jianfeng
    Steinerberger, Stefan
    NONLINEARITY, 2020, 33 (11) : 5905 - 5918
  • [4] Cluster Synchronization in Networks of Kuramoto Oscillators
    Favaretto, Chiara
    Cenedese, Angelo
    Pasqualetti, Fabio
    IFAC PAPERSONLINE, 2017, 50 (01): : 2433 - 2438
  • [5] Synchronization of Kuramoto oscillators in random complex networks
    Li, Ping
    Yi, Zhang
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2008, 387 (07) : 1669 - 1674
  • [6] ON THE GLOBAL CONVERGENCE OF FREQUENCY SYNCHRONIZATION FOR KURAMOTO AND WINFREE OSCILLATORS
    Hsia, Chun-Hsiung
    Jung, Chang-Yeol
    Kwon, Bongsuk
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2019, 24 (07): : 3319 - 3334
  • [7] On synchronization of Kuramoto oscillators
    Chopra, Nikhil
    Spong, Mark W.
    2005 44th IEEE Conference on Decision and Control & European Control Conference, Vols 1-8, 2005, : 3916 - 3922
  • [8] Locals vs. global synchronization in networks of non-identical Kuramoto oscillators
    M. Brede
    The European Physical Journal B, 2008, 62 : 87 - 94
  • [9] Locals vs. global synchronization in networks of non-identical Kuramoto oscillators
    Brede, M.
    EUROPEAN PHYSICAL JOURNAL B, 2008, 62 (01): : 87 - 94
  • [10] A Leonov Function for Almost Global Synchronization Conditions in Acyclic Networks of Heterogeneous Kuramoto Oscillators
    Mercado-Uribe, Angel
    Mendoza-Avila, Jesus
    Efimov, Denis
    Schiffer, Johannes
    IFAC PAPERSONLINE, 2023, 56 (02): : 9505 - 9510