Improving Generalisation of Genetic Programming for Symbolic Regression with Structural Risk Minimisation

被引:23
|
作者
Chen, Qi [1 ]
Xue, Bing [1 ]
Shang, Lin [2 ]
Zhang, Mengjie [1 ]
机构
[1] Victoria Univ Wellington, Sch Engn & Comp Sci, POB 600, Wellington 6400, New Zealand
[2] Nanjing Univ, State Key Lab Novel Software Technol, Nanjing 210046, Jiangsu, Peoples R China
来源
GECCO'16: PROCEEDINGS OF THE 2016 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE | 2016年
关键词
Genetic Programming; Symbolic Regression; Generalisation; Structural Risk Minimisation; VC Dimension; MACHINE;
D O I
10.1145/2908812.2908842
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Generalisation is one of the most important performance measures for any learning algorithm, no exception to Genetic Programming (GP). A number of works have been devoted to improve the generalisation ability of GP for symbolic regression. Methods based on a reliable estimation of generalisation error of models during evolutionary process are a sensible choice to enhance the generalisation of GP. Structural risk minimisation (SRM), which is based on the VC dimension in the learning theory, provides a powerful framework for estimating the difference between the generalisation error and the empirical error. Despite its solid theoretical foundation and reliability, SRM has seldom been applied to GP. The most important reason is the difficulty in measuring the VC dimension of GP models/programs. This paper introduces SRM, which is based on an empirical method to measure the VC dimension of models, into GP to improve its generalisation performance for symbolic regression. The results of a set of experiments confirm that GP with SRM has a dramatical generalisation gain while evolving more compact/less complex models than standard GP. Further analysis also shows that in most cases, GP with SRM has better generalisation performance than GP with bias-variance decomposition, which is one of the state-of-the-art methods to control overfitting.
引用
收藏
页码:709 / 716
页数:8
相关论文
共 50 条
  • [41] Improving Generalization of Genetic Programming for Symbolic Regression With Angle-Driven Geometric Semantic Operators
    Chen, Qi
    Xue, Bing
    Zhang, Mengjie
    IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2019, 23 (03) : 488 - 502
  • [42] Adaptive Weighted Splines - A New Representation to Genetic Programming for Symbolic Regression
    Raymond, Christian
    Chen, Qi
    Xue, Bing
    Zhang, Mengjie
    GECCO'20: PROCEEDINGS OF THE 2020 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, 2020, : 1003 - 1011
  • [43] Genetic Programming for Instance Transfer Learning in Symbolic Regression
    Chen, Qi
    Xue, Bing
    Zhang, Mengjie
    IEEE TRANSACTIONS ON CYBERNETICS, 2022, 52 (01) : 25 - 38
  • [44] Investigation of Linear Genetic Programming Techniques for Symbolic Regression
    Dal Piccol Sotto, Leo Francoso
    de Melo, Vinicius Veloso
    2014 BRAZILIAN CONFERENCE ON INTELLIGENT SYSTEMS (BRACIS), 2014, : 146 - 151
  • [45] Symbolic Regression via Control Variable Genetic Programming
    Jiang, Nan
    Xue, Yexiang
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES: RESEARCH TRACK, ECML PKDD 2023, PT IV, 2023, 14172 : 178 - 195
  • [46] Evolving Transparent Credit Risk Models: A Symbolic Regression Approach Using Genetic Programming
    Sotiropoulos, Dionisios N.
    Koronakos, Gregory
    Solanakis, Spyridon V.
    ELECTRONICS, 2024, 13 (21)
  • [47] Customized prediction of attendance to soccer matches based on symbolic regression and genetic programming
    Yamashita, Gabrielli H.
    Fogliatto, Flavio S.
    Anzanello, Michel J.
    Tortorella, Guilherme L.
    EXPERT SYSTEMS WITH APPLICATIONS, 2022, 187
  • [48] Preserving Population Diversity Based on Transformed Semantics in Genetic Programming for Symbolic Regression
    Chen, Qi
    Xue, Bing
    Zhang, Mengjie
    IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2021, 25 (03) : 433 - 447
  • [49] Differential Evolution for Instance based Transfer Learning in Genetic Programming for Symbolic Regression
    Chen, Qi
    Xue, Bing
    Zhang, Mengjie
    PROCEEDINGS OF THE 2019 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE COMPANION (GECCCO'19 COMPANION), 2019, : 161 - 162
  • [50] EFFECTS OF MUTATION BEFORE AND AFTER OFFSPRING SELECTION IN GENETIC PROGRAMMING FOR SYMBOLIC REGRESSION
    Kronberger, Gabriel K.
    Winkler, Stephan M.
    Affenzeller, Michael
    Kommenda, Michael
    Wagner, Stefan
    22ND EUROPEAN MODELING AND SIMULATION SYMPOSIUM (EMSS 2010), 2010, : 37 - 42