Dark-field imaging in coronary atherosclerosis

被引:6
|
作者
Hetterich, Holger [1 ]
Webber, Nicole [1 ]
Willner, Marian [2 ,3 ]
Herzen, Julia [2 ,3 ]
Birnbacher, Lorenz [2 ,3 ]
Auweter, Sigrid [1 ]
Schueller, Ulrich [4 ,5 ,6 ]
Bamberg, Fabian [1 ]
Notohamiprodjo, Susan [1 ]
Bartsch, Harald [7 ]
Wolf, Johannes [2 ,3 ]
Marschner, Mathias [2 ,3 ]
Pfeiffer, Franz [2 ,3 ]
Reiser, Maximilian [1 ]
Saam, Tobias [1 ]
机构
[1] Ludwig Maximilians Univ Hosp, Inst Clin Radiol, Marchioninistr 15, D-81377 Munich, Germany
[2] Tech Univ Munich, Phys Dept, Garching, Germany
[3] Tech Univ Munich, Inst Med Engn, Garching, Germany
[4] Ludwig Maximilians Univ Hosp, Ctr Neuropathol, Munich, Germany
[5] Univ Med Ctr Hamburg, Inst Neuropathol, Hamburg, Germany
[6] Univ Med Ctr Hamburg, Dept Pediat Hematol & Oncol, Hamburg, Germany
[7] Ludwig Maximilians Univ Hosp, Inst Pathol, Munich, Germany
基金
欧洲研究理事会;
关键词
Coronary vessels; Atherosclerosis; Microcalcification; Cardiac imaging techniques; Computed x-ray tomography; RISK-ASSESSMENT STRATEGIES; PHASE-CONTRAST; VULNERABLE PLAQUE; GRATING INTERFEROMETER; MICROCALCIFICATIONS; DEFINITIONS; HYPOTHESIS; PATIENT; RUPTURE; CALL;
D O I
10.1016/j.ejrad.2017.07.018
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Objectives: Dark-field imaging based on small angle X-ray scattering has been shown to be highly sensitive for microcalcifications, e.g. in breast tissue. We hypothesized (i) that high signal areas in dark-field imaging of atherosclerotic plaque are associated with microcalcifications and (ii) that dark-field imaging is more sensitive for microcalcifications than attenuation-based imaging. Methods: Fifteen coronary artery specimens were examined at an experimental set-up consisting of X-ray tube (40 kV), grating-interferometer and detector. Tomographic dark-field-,attenuation-, and phase-contrast data were simultaneously acquired. Histopathology served as standard of reference. To explore the potential of dark field imaging in a full-body CT system, simulations were carried out with spherical calcifications of different sizes to simulate small and intermediate microcalcifications. Results: Microcalcifications were present in 10/10 (100%) cross-sections with high dark-field signal and without evidence of calcifications in attenuation-or phase contrast. In positive controls with high signal areas in all three modalities, 10/10 (100%) cross-sections showed macrocalcifications. In negative controls without high signal areas, no calcifications were detected. Simulations showed that the microcalcifications generate substantially higher dark-field than attenuation signal. Conclusions: Dark-field imaging is highly sensitive for microcalcifications in coronary atherosclerotic plaque and might provide complementary information in the assessment of plaque instability.
引用
收藏
页码:38 / 45
页数:8
相关论文
共 50 条
  • [21] Computational and dark-field ghost imaging with ultraviolet light
    JIAQI SONG
    BAOLEI LIU
    YAO WANG
    CHAOHAO CHEN
    XUCHEN SHAN
    XIAOLAN ZHONG
    LING-AN WU
    FAN WANG
    Photonics Research, 2024, 12 (02) : 226 - 234
  • [22] The choice of an autocorrelation length in dark-field lung imaging
    Simon Spindler
    Dominik Etter
    Michał Rawlik
    Maxim Polikarpov
    Lucia Romano
    Zhitian Shi
    Konstantins Jefimovs
    Zhentian Wang
    Marco Stampanoni
    Scientific Reports, 13
  • [23] X-ray dark-field imaging modeling
    Cong, W.
    Pfeiffer, F.
    Bech, M.
    Wang, G.
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2012, 29 (06) : 908 - 912
  • [24] EXPERIMENTAL INVESTIGATIONS OF BRIGHT-FIELD AND DARK-FIELD STEM IMAGING
    YAMADA, N
    HIRONO, K
    HIBINO, M
    MARUSE, S
    JOURNAL OF ELECTRON MICROSCOPY, 1984, 33 (03): : 285 - 285
  • [25] DARK-FIELD ILLUMINATION
    ABRAMOWITZ, MJ
    AMERICAN LABORATORY, 1991, 23 (17) : 60 - 61
  • [26] Dark-field competition
    Baumbach, Christoph
    PHYSICS WORLD, 2014, 27 (04) : 22 - 22
  • [27] Molecular imaging using gold nanoparticles and a dark-field microscope
    Morimoto, Yuji
    Nakagishi, Yoshinori
    Kawauchi, Satoko
    Nishiyama, Nobuhiro
    Jang, Woo-Dong
    Kataoka, Kazunori
    Tsuda, Hitoshi
    Kikuchi, Makoto
    CANCER RESEARCH, 2006, 66 (08)
  • [28] Image processing in optic damage inspection of dark-field imaging
    Sun Zhi-hong
    Peng Zhi-tao
    Liu Hua
    Xie Ya-ping
    Jing Feng
    Wu Deng-sheng
    INFRARED AND PHOTOELECTRONIC IMAGERS AND DETECTOR DEVICES II, 2006, 6294
  • [29] A Novel Terahertz Dark-Field Imaging Method for Contrast Enhancement
    Liu, Hui
    Wu, Shiyou
    Zhao, Meng
    Wan, Zhihang
    Fang, Guangyou
    IEEE TRANSACTIONS ON PLASMA SCIENCE, 2024, 52 (10) : 5047 - 5053
  • [30] ATOMIC IMAGING USING THE DARK-FIELD ANNULAR DETECTOR IN THE STEM
    ISAACSON, M
    KOPF, D
    OHTSUKI, M
    UTLAUT, M
    ULTRAMICROSCOPY, 1979, 4 (01) : 101 - 104