Dark-field imaging in coronary atherosclerosis

被引:6
|
作者
Hetterich, Holger [1 ]
Webber, Nicole [1 ]
Willner, Marian [2 ,3 ]
Herzen, Julia [2 ,3 ]
Birnbacher, Lorenz [2 ,3 ]
Auweter, Sigrid [1 ]
Schueller, Ulrich [4 ,5 ,6 ]
Bamberg, Fabian [1 ]
Notohamiprodjo, Susan [1 ]
Bartsch, Harald [7 ]
Wolf, Johannes [2 ,3 ]
Marschner, Mathias [2 ,3 ]
Pfeiffer, Franz [2 ,3 ]
Reiser, Maximilian [1 ]
Saam, Tobias [1 ]
机构
[1] Ludwig Maximilians Univ Hosp, Inst Clin Radiol, Marchioninistr 15, D-81377 Munich, Germany
[2] Tech Univ Munich, Phys Dept, Garching, Germany
[3] Tech Univ Munich, Inst Med Engn, Garching, Germany
[4] Ludwig Maximilians Univ Hosp, Ctr Neuropathol, Munich, Germany
[5] Univ Med Ctr Hamburg, Inst Neuropathol, Hamburg, Germany
[6] Univ Med Ctr Hamburg, Dept Pediat Hematol & Oncol, Hamburg, Germany
[7] Ludwig Maximilians Univ Hosp, Inst Pathol, Munich, Germany
基金
欧洲研究理事会;
关键词
Coronary vessels; Atherosclerosis; Microcalcification; Cardiac imaging techniques; Computed x-ray tomography; RISK-ASSESSMENT STRATEGIES; PHASE-CONTRAST; VULNERABLE PLAQUE; GRATING INTERFEROMETER; MICROCALCIFICATIONS; DEFINITIONS; HYPOTHESIS; PATIENT; RUPTURE; CALL;
D O I
10.1016/j.ejrad.2017.07.018
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Objectives: Dark-field imaging based on small angle X-ray scattering has been shown to be highly sensitive for microcalcifications, e.g. in breast tissue. We hypothesized (i) that high signal areas in dark-field imaging of atherosclerotic plaque are associated with microcalcifications and (ii) that dark-field imaging is more sensitive for microcalcifications than attenuation-based imaging. Methods: Fifteen coronary artery specimens were examined at an experimental set-up consisting of X-ray tube (40 kV), grating-interferometer and detector. Tomographic dark-field-,attenuation-, and phase-contrast data were simultaneously acquired. Histopathology served as standard of reference. To explore the potential of dark field imaging in a full-body CT system, simulations were carried out with spherical calcifications of different sizes to simulate small and intermediate microcalcifications. Results: Microcalcifications were present in 10/10 (100%) cross-sections with high dark-field signal and without evidence of calcifications in attenuation-or phase contrast. In positive controls with high signal areas in all three modalities, 10/10 (100%) cross-sections showed macrocalcifications. In negative controls without high signal areas, no calcifications were detected. Simulations showed that the microcalcifications generate substantially higher dark-field than attenuation signal. Conclusions: Dark-field imaging is highly sensitive for microcalcifications in coronary atherosclerotic plaque and might provide complementary information in the assessment of plaque instability.
引用
收藏
页码:38 / 45
页数:8
相关论文
共 50 条
  • [1] Dark-field ghost imaging
    Dou, Ling-Yu
    Cao, De-Zhong
    Gao, Lu
    Song, Xin-Bing
    OPTICS EXPRESS, 2020, 28 (25) : 37167 - 37176
  • [2] Aberrated dark-field imaging systems
    Beltran, Mario A.
    Paganin, David M.
    PHYSICAL REVIEW A, 2018, 98 (05)
  • [3] DARK-FIELD IMAGING OF SUPERCOILED DNA
    DING, MX
    LIANG, FX
    CHEN, F
    ZHAI, ZH
    ZHANG, CG
    GAI, XZ
    CHINESE SCIENCE BULLETIN, 1993, 38 (03): : 239 - 241
  • [4] Dark-field Imaging of Supercoiled DNA
    丁明孝
    梁凤霞
    陈枫
    翟中和
    张存珪
    盖秀贞
    Chinese Science Bulletin, 1993, (03) : 239 - 241
  • [5] Phase-Contrast and Dark-Field Imaging
    Zabler, Simon
    JOURNAL OF IMAGING, 2018, 4 (10):
  • [6] Terahertz dark-field imaging of biomedical tissue
    Löffler, T
    Bauer, T
    Siebert, KJ
    Roskos, HG
    Fitzgerald, A
    Czasch, S
    OPTICS EXPRESS, 2001, 9 (12): : 616 - 621
  • [7] Dark-field third-harmonic imaging
    Doronina-Amitonova, L. V.
    Lanin, A. A.
    Fedotov, I. V.
    Ivashkina, O. I.
    Zots, M. A.
    Fedotov, A. B.
    Anokhin, K. V.
    Zheltikov, A. M.
    APPLIED PHYSICS LETTERS, 2013, 103 (09)
  • [8] Dark-field imaging by active polymer slab waveguide
    Chen, Yikai
    Zhang, Douguo
    Han, Lu
    Wang, Xiangxian
    Zhu, Liangfu
    Wang, Pei
    Ming, Hai
    APPLIED OPTICS, 2013, 52 (33) : 8117 - 8121
  • [9] Dark-field imaging with cylindrical-vector beams
    Biss, DP
    Youngworth, KS
    Brown, TG
    APPLIED OPTICS, 2006, 45 (03) : 470 - 479
  • [10] Directional x-ray dark-field imaging
    Jensen, Torben H.
    Bech, Martin
    Bunk, Oliver
    Donath, Tilman
    David, Christian
    Feidenhans'i, Robert
    Pfeiffer, Franz
    PHYSICS IN MEDICINE AND BIOLOGY, 2010, 55 (12): : 3317 - 3323