CAD system for lung nodule detection using deep learning with CNN

被引:22
作者
Manickavasagam, R. [1 ]
Selvan, S. [2 ]
Selvan, Mary [3 ]
机构
[1] Alpha Coll Engn, Dept BME, Chennai 124, Tamil Nadu, India
[2] St Peters Inst Higher Educ & Res, Dept ECE, Chennai 54, Tamil Nadu, India
[3] St Peters Coll Engn & Technol, Dept CSE, Chennai 54, Tamil Nadu, India
关键词
Lung nodules; Computed tomography (CT); Deep learning; Convolutional neural network (CNN); LIDC; COMPUTED-TOMOGRAPHY IMAGES; PULMONARY NODULES; NEURAL-NETWORKS; AIDED DETECTION; CLASSIFICATION;
D O I
10.1007/s11517-021-02462-3
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The early detection of pulmonary nodules using computer-aided diagnosis (CAD) systems is very essential in reducing mortality rates of lung cancer. In this paper, we propose a new deep learning approach to improve the classification accuracy of pulmonary nodules in computed tomography (CT) images. Our proposed CNN-5CL (convolutional neural network with 5 convolutional layers) approach uses an 11-layer convolutional neural network (with 5 convolutional layers) for automatic feature extraction and classification. The proposed method is evaluated using LIDC/IDRI images. The proposed method is implemented in the Python platform, and the performance is evaluated with metrics such as accuracy, sensitivity, specificity, and receiver operating characteristics (ROC). The results show that the proposed method achieves accuracy, sensitivity, specificity, and area under the roc curve (AUC) of 98.88%, 99.62%, 93.73%, and 0.928, respectively. The proposed approach outperforms various other methods such as Naive Bayes, K-nearest neighbor, support vector machine, adaptive neuro fuzzy inference system methods, and also other deep learning-based approaches.
引用
收藏
页码:221 / 228
页数:8
相关论文
共 28 条
[1]   The Lung Image Database Consortium, (LIDC) and Image Database Resource Initiative (IDRI): A Completed Reference Database of Lung Nodules on CT Scans [J].
Armato, Samuel G., III ;
McLennan, Geoffrey ;
Bidaut, Luc ;
McNitt-Gray, Michael F. ;
Meyer, Charles R. ;
Reeves, Anthony P. ;
Zhao, Binsheng ;
Aberle, Denise R. ;
Henschke, Claudia I. ;
Hoffman, Eric A. ;
Kazerooni, Ella A. ;
MacMahon, Heber ;
van Beek, Edwin J. R. ;
Yankelevitz, David ;
Biancardi, Alberto M. ;
Bland, Peyton H. ;
Brown, Matthew S. ;
Engelmann, Roger M. ;
Laderach, Gary E. ;
Max, Daniel ;
Pais, Richard C. ;
Qing, David P-Y ;
Roberts, Rachael Y. ;
Smith, Amanda R. ;
Starkey, Adam ;
Batra, Poonam ;
Caligiuri, Philip ;
Farooqi, Ali ;
Gladish, Gregory W. ;
Jude, C. Matilda ;
Munden, Reginald F. ;
Petkovska, Iva ;
Quint, Leslie E. ;
Schwartz, Lawrence H. ;
Sundaram, Baskaran ;
Dodd, Lori E. ;
Fenimore, Charles ;
Gur, David ;
Petrick, Nicholas ;
Freymann, John ;
Kirby, Justin ;
Hughes, Brian ;
Casteele, Alessi Vande ;
Gupte, Sangeeta ;
Sallam, Maha ;
Heath, Michael D. ;
Kuhn, Michael H. ;
Dharaiya, Ekta ;
Burns, Richard ;
Fryd, David S. .
MEDICAL PHYSICS, 2011, 38 (02) :915-931
[2]  
CHEN H, 2020, ADV MULTIMED, V2020, P1
[3]   A convolutional neural network with dynamic correlation pooling [J].
Chen, Junfeng ;
Hua, Zhoudong ;
Wang, Jingyu ;
Cheng, Shi .
2017 13TH INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND SECURITY (CIS), 2017, :496-499
[4]   Automated Pulmonary Nodule Detection System in Computed Tomography Images: A Hierarchical Block Classification Approach [J].
Choi, Wook-Jin ;
Choi, Tae-Sun .
ENTROPY, 2013, 15 (02) :507-523
[5]   Computer-aided diagnosis in medical imaging: Historical review, current status and future potential [J].
Doi, Kunio .
COMPUTERIZED MEDICAL IMAGING AND GRAPHICS, 2007, 31 (4-5) :198-211
[6]  
GIRSHICK R, 2014, PROC CVPR IEEE, P580, DOI [DOI 10.1109/CVPR.2014.81, 10.1109/CVPR.2014.81]
[7]   Computer-aided detection of pulmonary nodules using dynamic self-adaptive template matching and a FLDA classifier [J].
Gong, Jing ;
Liu, Ji-yu ;
Wang, Li-jia ;
Zheng, Bin ;
Nie, Sheng-dong .
PHYSICA MEDICA-EUROPEAN JOURNAL OF MEDICAL PHYSICS, 2016, 32 (12) :1502-1509
[8]   Fast and Adaptive Detection of Pulmonary Nodules in Thoracic CT Images Using a Hierarchical Vector Quantization Scheme [J].
Han, Hao ;
Li, Lihong ;
Han, Fangfang ;
Song, Bowen ;
Moore, William ;
Liang, Zhengrong .
IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2015, 19 (02) :648-659
[9]  
He K, 2016, PROC CVPR IEEE, V2016, P630, DOI DOI 10.1007/978-3-319-46493-0_38
[10]   A fast learning algorithm for deep belief nets [J].
Hinton, Geoffrey E. ;
Osindero, Simon ;
Teh, Yee-Whye .
NEURAL COMPUTATION, 2006, 18 (07) :1527-1554