An algorithm for hyperspectral remote sensing of aerosols: 1. Development of theoretical framework

被引:58
作者
Hou, Weizhen [1 ]
Wang, Jun [1 ]
Xu, Xiaoguang [1 ]
Reid, Jeffrey S. [2 ]
Han, Dong [1 ]
机构
[1] Univ Nebraska, Earth & Atmospher Sci, 303 Bessey Hall, Lincoln, NE 68588 USA
[2] Naval Res Lab, Marine Meteorol Div, 7 Grace Hopper Ave,Stop 2, Monterey, CA 93943 USA
基金
美国国家航空航天局;
关键词
GEO-TASO; TEMPO; Principal Component Analysis (PCA); Hyperspectral Remote Sensing; Aerosol Retrieval; Surface Reflectance Reconstruction; PRINCIPAL COMPONENT ANALYSIS; PHOTOPOLARIMETRIC MEASUREMENTS; ATMOSPHERIC CORRECTION; RADIATIVE-TRANSFER; OPTICAL-PROPERTIES; MICROPHYSICAL PROPERTIES; SATELLITE RETRIEVALS; REFLECTANCE SPECTRA; INFORMATION-CONTENT; LAND SURFACES;
D O I
10.1016/j.jqsrt.2016.01.019
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
This paper describes the first part of a series of investigations to develop algorithms for simultaneous retrieval of aerosol parameters and surface reflectance from a newly developed hyperspectral instrument, the GEOstationary Trace gas and Aerosol Sensor Optimization (GEO-TASO), by taking full advantage of available hyperspectral measurement information in the visible bands. We describe the theoretical framework of an inversion algorithm for the hyperspectral remote sensing of the aerosol optical properties, in which major principal components (PCs) for surface reflectance is assumed known, and the spectrally dependent aerosol refractive indices are assumed to follow a power-law approximation with four unknown parameters (two for real and two for imaginary part of refractive index). New capabilities for computing the Jacobians of four Stokes parameters of reflected solar radiation at the top of the atmosphere with respect to these unknown aerosol parameters and the weighting coefficients for each PC of surface reflectance are added into the UNified Linearized Vector Radiative Transfer Model (UNL-VRTM), which in turn facilitates the optimization in the inversion process. Theoretical derivations of the formulas for these new capabilities are provided, and the analytical solutions of Jacobians are validated against the finite-difference calculations with relative error less than 0.2%. Finally, self-consistency check of the inversion algorithm is conducted for the idealized green-vegetation and rangeland surfaces that were spectrally characterized by the U.S. Geological Survey digital spectral library. It shows that the first six PCs can yield the reconstruction of spectral surface reflectance with errors less than 1%. Assuming that aerosol properties can be accurately characterized, the inversion yields a retrieval of hyperspectral surface reflectance with an uncertainty of 2% (and root-mean-square error of less than 0.003), which suggests self-consistency in the inversion framework. The next step of using this framework to study the aerosol information content in GEO-TASO measurements is also discussed. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:400 / 415
页数:16
相关论文
共 89 条
[41]  
2
[42]   Toward aerosol optical depth retrievals over land from GOES visible radiances: determining surface reflectance [J].
Knapp, KR ;
Frouin, R ;
Kondragunta, S ;
Prados, A .
INTERNATIONAL JOURNAL OF REMOTE SENSING, 2005, 26 (18) :4097-4116
[43]  
Kneizys F.X., 1996, The MODTRAN 2/3 Report and LOWTRAN 7 MODEL
[44]   Aerosol remote sensing over land:: A comparison of satellite retrievals using different algorithms and instruments [J].
Kokhanovsky, A. A. ;
Breon, F.-M. ;
Cacciari, A. ;
Carboni, E. ;
Diner, D. ;
Di Nicolantonio, W. ;
Grainger, R. G. ;
Grey, W. M. F. ;
Hoeller, R. ;
Lee, K.-H. ;
Li, Z. ;
North, P. R. J. ;
Sayer, A. M. ;
Thomas, G. E. ;
von Hoyningen-Huene, W. .
ATMOSPHERIC RESEARCH, 2007, 85 (3-4) :372-394
[45]  
Kokhanovsky AlexanderA., 2009, Satellite Aerosol Remote Sensing Over Land
[46]   A forward/backward principal component analysis of Landsat-7 ETM+ data to enhance the spectral signal of burnt surfaces [J].
Koutsias, Nikos ;
Mallinis, Giorgos ;
Karteris, Michael .
ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2009, 64 (01) :37-46
[47]   Retrieval of vertical columns of sulfur dioxide from SCIAMACHY and OMI: Air mass factor algorithm development, validation, and error analysis [J].
Lee, Chulkyu ;
Martin, Randall V. ;
van Donkelaar, Aaron ;
O'Byrne, Gray ;
Krotkov, Nickolay ;
Richter, Andreas ;
Huey, L. Gregory ;
Holloway, John S. .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2009, 114
[48]  
Leitch JW, 2014, P SOC PHOTO-OPT INS
[49]   Global evaluation of the Collection 5 MODIS dark-target aerosol products over land [J].
Levy, R. C. ;
Remer, L. A. ;
Kleidman, R. G. ;
Mattoo, S. ;
Ichoku, C. ;
Kahn, R. ;
Eck, T. F. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2010, 10 (21) :10399-10420
[50]   Models for surface reflection of radiance and polarized radiance: Comparison with airborne multi-angle photopolarimetric measurements and implications for modeling top-of-atmosphere measurements [J].
Litvinov, Pavel ;
Hasekamp, Otto ;
Cairns, Brian .
REMOTE SENSING OF ENVIRONMENT, 2011, 115 (02) :781-792