Fatigue damage analysis of prefabricated concrete composite beams based on metal magnetic memory technique

被引:10
|
作者
Xie, Zhiyu [1 ]
Zhang, Dawei [1 ]
Ueda, Tamon [2 ]
Jin, Weiliang [3 ]
机构
[1] Zhejiang Univ, Inst Struct Engn, Hangzhou 310058, Peoples R China
[2] Shenzhen Univ, Coll Civil & Transportat Engn, Shenzhen 518061, Peoples R China
[3] Zhejiang Univ, Inst Struct Engn, Hangzhou 310058, Peoples R China
基金
中国国家自然科学基金;
关键词
Prefabricated concrete composite beam; Fatigue damage; Interfacial peeling; Metal magnetic memory; MODEL;
D O I
10.1016/j.jmmm.2021.168722
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Current studies have shown that using magnetic field change around the ferromagnetic material to characterize the fatigue damage is very effective, but researches on using metal magnetic memory (MMM) technique to detect fatigue damage are mostly limited to the material level. There are few studies on the mechanism of the magnetic signal change or numerical simulations at the member level. In this paper, cyclic loading tests were carried out on 8 prefabricated concrete composite beam specimens using wet connection technology. The relationship between the variation in the magnetic field of the steel reinforcement and the interface peeling damage of the specimens were investigated. Based on the magnetic flux density, the interface deformation, and the longitudinal bar strain, the mechanism of the magnetic signal change in different stages as well as interface peeling's effect on the magnetic flux density were revealed. The feasibility of using the MMM field to characterize the fatigue damage of the composite spcimens was thus verified. Meanwhile, based on the modified J-A-S model, the model for magnetization change of prefabricated reinforced concrete components was established. By comparing the experimental and the simulation results, it is verified that the proposed model could effectively describe the magnetization change trend of the composite spcimens during the fatigue process.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] A study on fatigue life evaluation of 42CrMo steel under cyclic loading based on metal magnetic memory method
    Jiang, Hao
    Zhang, Laibin
    Fan, Jianchun
    Zhang, Zhitong
    Wang, Kaiwen
    NDT & E INTERNATIONAL, 2025, 151
  • [42] Fatigue damage and stiffness evolution in composite laminates: a damage-based framework
    Carraro, Paolo A.
    Quaresimin, Marino
    7TH INTERNATIONAL CONFERENCE ON FATIGUE DESIGN, FATIGUE DESIGN 2017, 2018, 213 : 17 - 24
  • [43] Theoretical studies of metal magnetic memory technique on magnetic flux leakage signals
    Wang, Z. D.
    Yao, K.
    Deng, B.
    Ding, K. Q.
    NDT & E INTERNATIONAL, 2010, 43 (04) : 354 - 359
  • [44] Diagnostic of fatigue damage severity on reinforced concrete beam using acoustic emission technique
    Nor, Noorsuhada Md
    Ibrahim, Azmi
    Bunnori, Norazura Muhamad
    Saman, Hamidah Mohd
    Saliah, Soffian Noor Mat
    Shahidan, Shahiron
    ENGINEERING FAILURE ANALYSIS, 2014, 41 : 1 - 9
  • [45] An overview on fatigue damage assessment of reinforced concrete structures with the aid of acoustic emission technique
    Noorsuhada, M. N.
    CONSTRUCTION AND BUILDING MATERIALS, 2016, 112 : 424 - 439
  • [46] Deformation Analysis of Prestressed Continuous Steel-Concrete Composite Beams
    Nie, Jianguo
    Tao, Muxuan
    Cai, C. S.
    Li, Shaojing
    JOURNAL OF STRUCTURAL ENGINEERING, 2009, 135 (11) : 1377 - 1389
  • [47] A damage-based approach for the fatigue design of composite structures
    Quaresimin, Marino
    37th Riso International Symposium on Materials Science, 2016, 139
  • [48] Fatigue life prediction of cord-rubber composite structures based on progressive damage analysis
    Jha, Niraj Kumar
    Nackenhorst, Udo
    ENGINEERING COMPUTATIONS, 2018, 35 (06) : 2215 - 2233
  • [49] Fast reconstruction method for defect profiles of ferromagnetic materials based on metal magnetic memory technique
    Li, Junting
    Su, Sanqing
    Wang, Wei
    Liu, Xinwei
    Zuo, Fuliang
    MEASUREMENT, 2023, 215
  • [50] Fatigue damage analysis on existing reinforced concrete bridge under overloading
    College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310027, China
    Yingyong Jichu yu Gongcheng Kexue Xuebao, 2008, 5 (733-740):