Universal Local Linear Kernel Estimators in Nonparametric Regression

被引:11
作者
Linke, Yuliana [1 ]
Borisov, Igor [1 ]
Ruzankin, Pavel [1 ]
Kutsenko, Vladimir [2 ,3 ]
Yarovaya, Elena [2 ,3 ]
Shalnova, Svetlana [3 ]
机构
[1] Sobolev Inst Math, Novosibirsk 630090, Russia
[2] Lomonosov Moscow State Univ, Dept Probabil Theory, Moscow 119234, Russia
[3] Natl Med Res Ctr Therapy & Prevent Med, Dept Epidemiol Noncommunicable Dis, Moscow 101990, Russia
关键词
nonparametric regression; kernel estimator; local linear estimator; uniform consistency; fixed design; random design; dependent design elements; mean of dense functional data; epidemiological research; UNIFORM-CONVERGENCE RATES; FUNCTIONAL DATA; ASYMPTOTIC PROPERTIES; FIXED-DESIGN; CONSISTENCY; SPARSE;
D O I
10.3390/math10152693
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
New local linear estimators are proposed for a wide class of nonparametric regression models. The estimators are uniformly consistent regardless of satisfying traditional conditions of dependence of design elements. The estimators are the solutions of a specially weighted least-squares method. The design can be fixed or random and does not need to meet classical regularity or independence conditions. As an application, several estimators are constructed for the mean of dense functional data. The theoretical results of the study are illustrated by simulations. An example of processing real medical data from the epidemiological cross-sectional study ESSE-RF is included. We compare the new estimators with the estimators best known for such studies.
引用
收藏
页数:28
相关论文
共 50 条
[31]   On local smoothing of nonparametric curve estimators [J].
Fan, JQ ;
Hall, P ;
Martin, MA ;
Patil, P .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1996, 91 (433) :258-266
[32]   Recursive regression estimators with application to nonparametric prediction [J].
Amiri, Aboubacar .
JOURNAL OF NONPARAMETRIC STATISTICS, 2012, 24 (01) :169-186
[33]   The efficiency of bias-corrected estimators for nonparametric kernel estimation based on local estimating equations [J].
Kauermann, G ;
Muller, M ;
Carroll, RJ .
STATISTICS & PROBABILITY LETTERS, 1998, 37 (01) :41-47
[34]   Nonparametric regression estimators for length biased data [J].
Cristóbal, JA ;
Alcalá, JT .
JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2000, 89 (1-2) :145-168
[35]   Nonparametric local linear regression estimation for censored data and functional regressors [J].
Leulmi Sara .
Journal of the Korean Statistical Society, 2022, 51 :25-46
[36]   Nonparametric regression estimates with censored data: Local linear smoothers and their applications [J].
Kim, HT ;
Truong, YK .
BIOMETRICS, 1998, 54 (04) :1434-1444
[37]   Nonparametric local linear regression estimation for censored data and functional regressors [J].
Sara, Leulmi .
JOURNAL OF THE KOREAN STATISTICAL SOCIETY, 2022, 51 (01) :25-46
[38]   kNN robustification equivariant nonparametric regression estimators for functional ergodic data [J].
Guenani, Somia ;
Bouabsa, Wahiba ;
Attouch, Mohammed Kadi ;
Fetitah, Omar .
HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2023, 52 (02) :512-528
[39]   Relative errors of difference-based variance estimators in nonparametric regression [J].
Tong, Tiejun ;
Liu, Anna ;
Wang, Yuedong .
COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2008, 37 (18) :2890-2902
[40]   Adaptive warped kernel estimation for nonparametric regression with circular responses [J].
Nguyen, Tien Dat ;
Ngoc, Thanh Mai Pham ;
Rivoirard, Vincent .
ELECTRONIC JOURNAL OF STATISTICS, 2023, 17 (02) :4011-4048