Caputo-Hadamard fractional Halanay inequality

被引:18
|
作者
He, Bin-Bin [1 ]
Zhou, Hua-Cheng [2 ]
机构
[1] Zhejiang Univ Technol, Coll Sci, Hangzhou 310023, Zhejiang, Peoples R China
[2] Cent South Univ, Sch Math & Stat, Changsha 410075, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
Halanay inequality; Caputo-Hadamard fractional derivative; Stability; Fractional nonlinear systems; ASYMPTOTIC STABILITY; SYSTEMS;
D O I
10.1016/j.aml.2021.107723
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is concerned with Caputo-Hadamard fractional Halanay inequality. A useful fractional derivative inequality regarding on x(2) in the Caputo-Hadamard sense is obtained, which makes Halanay inequality more applicable to choose the Lyapunov function and to study the stability of fractional system. (C) 2021 Elsevier Ltd. All rights reserved.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Halanay inequality involving Caputo-Hadamard fractional derivative and application
    Kassim, Mohammed D.
    Tatar, Nasser-eddine
    INTERNATIONAL JOURNAL OF NONLINEAR SCIENCES AND NUMERICAL SIMULATION, 2023, 24 (07) : 2663 - 2675
  • [2] Caputo-Hadamard fractional chaotic maps
    Liu, Zeyu
    Chen, Jiaxin
    Zhou, Wenquan
    PHYSICA SCRIPTA, 2023, 98 (07)
  • [3] On Caputo-Hadamard fractional differential equations
    Gohar, Madiha
    Li, Changpin
    Yin, Chuntao
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2020, 97 (07) : 1459 - 1483
  • [4] On Caputo-Hadamard uncertain fractional differential equations
    Liu, Yiyu
    Zhu, Yuanguo
    Lu, Ziciiang
    CHAOS SOLITONS & FRACTALS, 2021, 146
  • [5] Caputo-Hadamard Fractional Derivatives of Variable Order
    Almeida, Ricardo
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2017, 38 (01) : 1 - 19
  • [6] Caputo-Hadamard implicit fractional differential equations with delay
    Krim, Salim
    Abbas, Said
    Benchohra, Mouffak
    SAO PAULO JOURNAL OF MATHEMATICAL SCIENCES, 2021, 15 (01): : 463 - 484
  • [7] Caputo-Hadamard implicit fractional differential equations with delay
    Salim Krim
    Saïd Abbas
    Mouffak Benchohra
    São Paulo Journal of Mathematical Sciences, 2021, 15 : 463 - 484
  • [8] SOLUTIONS OF CAUCHY PROBLEMS WITH CAPUTO-HADAMARD FRACTIONAL DERIVATIVES
    Manohar, Pratibha
    Chanchlani, Lata
    Mallah, Ishfaq Ahmad
    JOURNAL OF RAJASTHAN ACADEMY OF PHYSICAL SCIENCES, 2021, 20 (3-4): : 165 - 174
  • [9] THE PARAREAL ALGORITHM FOR CAPUTO-HADAMARD FRACTIONAL DIFFERENTIAL EQUATIONS
    He, Tingting
    Lu, Jian
    Li, Min
    COMMUNICATIONS ON ANALYSIS AND COMPUTATION, 2024, 2 (04): : 432 - 453
  • [10] COMPARISON THEOREMS FOR CAPUTO-HADAMARD FRACTIONAL DIFFERENTIAL EQUATIONS
    Ma, Li
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2019, 27 (03)