Integrative analysis of immune-related multi-omics profiles identifies distinct prognosis and tumor microenvironment patterns in osteosarcoma

被引:20
作者
Shi, Deyao [1 ,2 ]
Mu, Shidai [3 ]
Pu, Feifei [1 ]
Liu, Jianxiang [1 ]
Zhong, Binlong [1 ]
Hu, Binwu [1 ]
Ni, Na [2 ,4 ]
Wang, Hao [2 ,4 ]
Luu, Hue H. [2 ]
Haydon, Rex C. [2 ]
Shen, Le [2 ,5 ]
Zhang, Zhicai [1 ]
He, Tong-Chuan [2 ,5 ]
Shao, Zengwu [1 ]
机构
[1] Huazhong Univ Sci & Technol, Union Hosp, Tongji Med Coll, Dept Orthopaed, Jiefang Rd 1277, Wuhan 430022, Peoples R China
[2] Univ Chicago, Dept Orthopaed Surg & Rehabil Med, Mol Oncol Lab, Med Ctr, 5841 South Maryland Ave,MC3079, Chicago, IL 60637 USA
[3] Huazhong Univ Sci & Technol, Union Hosp, Tongji Med Coll, Inst Hematol, Wuhan, Peoples R China
[4] Chongqing Med Univ, Sch Lab Med, Dept Clin Biochem, Minist Educ,Key Lab Diagnost Med, Chongqing, Peoples R China
[5] Univ Chicago, Dept Surg, Med Ctr, Chicago, IL 60637 USA
基金
美国国家卫生研究院;
关键词
DNA methylation; osteosarcoma; prognostic risk model; transcriptomics; tumor immunology; tumor microenvironment; REGULATORY T-CELLS; DNA METHYLATION; R PACKAGE; GENE; EXPRESSION; SURVIVAL; MODELS; DISCOVERY; GENOMICS; BREAST;
D O I
10.1002/1878-0261.13160
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Osteosarcoma (OS) is the most common primary malignancy of bone. Epigenetic regulation plays a pivotal role in cancer development in various aspects, including immune response. In this study, we studied the potential association of alterations in the DNA methylation and transcription of immune-related genes with changes in the tumor microenvironment (TME) and tumor prognosis of OS. We obtained multi-omics data for OS patients from the Therapeutically Applicable Research to Generate Effective Treatments (TARGET) and Gene Expression Omnibus (GEO) databases. By referring to curated immune signatures and using a consensus clustering method, we categorized patients based on immune-related DNA methylation patterns (IMPs), and evaluated prognosis and TME characteristics of the resulting patient subgroups. Subsequently, we used a machine-learning approach to construct an IMP-associated prognostic risk model incorporating the expression of a six-gene signature (MYC, COL13A1, UHRF2, MT1A, ACTB, and GBP1), which was then validated in an independent patient cohort. Furthermore, we evaluated TME patterns, transcriptional variation in biological pathways, somatic copy number alteration, anticancer drug sensitivity, and potential responsiveness to immune checkpoint inhibitor therapy with regard to our IMP-associated signature scoring model. By integrative IMP and transcriptomic analysis, we uncovered distinct prognosis and TME patterns in OS. Finally, we constructed a classifying model, which may aid in prognosis prediction and provide a potential rationale for targeted- and immune checkpoint inhibitor therapy in OS.
引用
收藏
页码:2174 / 2194
页数:21
相关论文
共 85 条
  • [1] 8q24 prostate, breast, and colon cancer risk loci show tissue-specific long-range interaction with MYC
    Ahmadiyeh, Nasim
    Pomerantz, Mark M.
    Grisanzio, Chiara
    Herman, Paula
    Jia, Li
    Almendro, Vanessa
    He, Housheng Hansen
    Brown, Myles
    Liu, X. Shirley
    Davis, Matt
    Caswell, Jennifer L.
    Beckwith, Christine A.
    Hills, Adam
    MacConaill, Laura
    Coetzee, Gerhard A.
    Regan, Meredith M.
    Freedman, Matthew L.
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2010, 107 (21) : 9742 - 9746
  • [2] xCell: digitally portraying the tissue cellular heterogeneity landscape
    Aran, Dvir
    Hu, Zicheng
    Butte, Atul J.
    [J]. GENOME BIOLOGY, 2017, 18
  • [3] ArrayExpress update - from bulk to single-cell expression data
    Athar, Awais
    Fullgrabe, Anja
    George, Nancy
    Iqbal, Haider
    Huerta, Laura
    Ali, Ahmed
    Snow, Catherine
    Fonseca, Nuno A.
    Petryszak, Robert
    Papatheodorou, Irene
    Sarkans, Ugis
    Brazma, Alvis
    [J]. NUCLEIC ACIDS RESEARCH, 2019, 47 (D1) : D711 - D715
  • [4] IFN-γ-related mRNA profile predicts clinical response to PD-1 blockade
    Ayers, Mark
    Lunceford, Jared
    Nebozhyn, Michael
    Murphy, Erin
    Loboda, Andrey
    Kaufman, David R.
    Albright, Andrew
    Cheng, Jonathan D.
    Kang, S. Peter
    Shankaran, Veena
    Piha-Paul, Sarina A.
    Yearley, Jennifer
    Seiwert, Tanguy Y.
    Ribas, Antoni
    McClanahan, Terrill K.
    [J]. JOURNAL OF CLINICAL INVESTIGATION, 2017, 127 (08) : 2930 - 2940
  • [5] An automated method for finding molecular complexes in large protein interaction networks
    Bader, GD
    Hogue, CW
    [J]. BMC BIOINFORMATICS, 2003, 4 (1)
  • [6] Conserved pan-cancer microenvironment subtypes predict response to immunotherapy
    Bagaev, Alexander
    Kotlov, Nikita
    Nomie, Krystle
    Svekolkin, Viktor
    Gafurov, Azamat
    Isaeva, Olga
    Osokin, Nikita
    Kozlov, Ivan
    Frenkel, Felix
    Gancharova, Olga
    Almog, Nava
    Tsiper, Maria
    Ataullakhanov, Ravshan
    Fowler, Nathan
    [J]. CANCER CELL, 2021, 39 (06) : 845 - +
  • [7] NCBI GEO: archive for functional genomics data sets-update
    Barrett, Tanya
    Wilhite, Stephen E.
    Ledoux, Pierre
    Evangelista, Carlos
    Kim, Irene F.
    Tomashevsky, Maxim
    Marshall, Kimberly A.
    Phillippy, Katherine H.
    Sherman, Patti M.
    Holko, Michelle
    Yefanov, Andrey
    Lee, Hyeseung
    Zhang, Naigong
    Robertson, Cynthia L.
    Serova, Nadezhda
    Davis, Sean
    Soboleva, Alexandra
    [J]. NUCLEIC ACIDS RESEARCH, 2013, 41 (D1) : D991 - D995
  • [8] MYC DNA Methylation in Prostate Tumor Tissue is Associated with Gleason Score
    Barry, Kathryn Hughes
    Mohanty, Kareshma
    Erickson, Patricia A.
    Wang, Difei
    Shi, Jianxin
    Rose, Gary
    Cellini, Ashley
    Clark, Kimberly
    Ambulos, Nicholas, Jr.
    Yin, Jing
    Yan, Liying
    Poulin, Matthew
    Meyer, Ann
    Zhang, Yuji
    Bentzen, Soren M.
    Burke, Allen
    Hussain, Arif
    Berndt, Sonja I.
    [J]. GENES, 2021, 12 (01) : 1 - 23
  • [9] ImmPort, toward repurposing of open access immunological assay data for translational and clinical research
    Bhattacharya, Sanchita
    Dunn, Patrick
    Thomas, Cristel G.
    Smith, Barry
    Schaefer, Henry
    Chen, Jieming
    Hu, Zicheng
    Zalocusky, Kelly A.
    Shankar, Ravi D.
    Shen-Orr, Shai S.
    Thomson, Elizabeth
    Wiser, Jeffrey
    Butte, Atul J.
    [J]. SCIENTIFIC DATA, 2018, 5
  • [10] CD4+ T cell help in cancer immunology and immunotherapy
    Borst, Jannie
    Ahrends, Tomasz
    Babala, Nikolina
    Melief, Cornelis J. M.
    Kastenmueller, Wolfgang
    [J]. NATURE REVIEWS IMMUNOLOGY, 2018, 18 (10) : 635 - 647