FinerPCN: High fidelity point cloud completion network using pointwise convolution

被引:23
作者
Chang, Yakun [1 ]
Jung, Cheolkon [1 ]
Xu, Yuanquan [1 ]
机构
[1] Xidian Univ, Sch Elect Engn, Xian 710071, Peoples R China
基金
中国国家自然科学基金;
关键词
3D point cloud; Shape completion; Point analysis; Deep learning; Point completion network; SHAPE;
D O I
10.1016/j.neucom.2021.06.080
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
3D scanners often obtain partial point clouds due to occlusion and limitation of viewing angles. Point cloud completion aims at inferring the full shape of an object from an incomplete point set. Existing deep learning models either do not consider local information or easily degrade the sharp details of the input, thereby losing some existing structures. In this paper, we propose a high fidelity point cloud completion network using pointwise convolution, called FinerPCN. FinerPCN generates complete and fine point clouds in a coarse-to-fine manner. FinerPCN consists of two subnetworks: an encoder-decoder for gener-ating a coarse shape and pointwise convolution for refining its local structure. By repeatedly feeding par-tial input into the second subnetwork, FinerPCN effectively considers local information and alleviates structural blur of input while maintaining global shape. Experimental results show that FinerPCN gener-ates finer detailed completion results than state-of-the-art methods while successfully keeping the shape of the input. (c) 2021 Published by Elsevier B.V.
引用
收藏
页码:266 / 276
页数:11
相关论文
共 50 条
  • [21] Stage-Aware Interaction Network for Point Cloud Completion
    Wu, Hang
    Miao, Yubin
    [J]. ELECTRONICS, 2024, 13 (16)
  • [22] AGFA-Net: Adaptive Global Feature Augmentation Network for Point Cloud Completion
    Liu, Xinpu
    Ma, Yanxin
    Xu, Ke
    Wan, Jianwei
    Guo, Yulan
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [23] Three-stage generative network for single-view point cloud completion
    Xiao, Bingling
    Da, Feipeng
    [J]. VISUAL COMPUTER, 2022, 38 (12) : 4373 - 4382
  • [24] Multi-space and detail-supplemented attention network for point cloud completion
    Xiang, Min
    Ye, Hailiang
    Yang, Bing
    Cao, Feilong
    [J]. APPLIED INTELLIGENCE, 2023, 53 (12) : 14971 - 14985
  • [25] Multi-space and detail-supplemented attention network for point cloud completion
    Min Xiang
    Hailiang Ye
    Bing Yang
    Feilong Cao
    [J]. Applied Intelligence, 2023, 53 : 14971 - 14985
  • [26] DPPCN: density and position-based point convolution network for point cloud segmentation
    Li, Yaqian
    Zhang, Ze
    Li, Haibin
    Zhang, Wenming
    [J]. PATTERN ANALYSIS AND APPLICATIONS, 2025, 28 (02)
  • [27] End-to-End Point Cloud Completion Network with Attention Mechanism
    Li, Yaqin
    Han, Binbin
    Zeng, Shan
    Xu, Shengyong
    Yuan, Cao
    [J]. SENSORS, 2022, 22 (17)
  • [28] Cascaded Refinement Network for Point Cloud Completion With Self-Supervision
    Wang, Xiaogang
    Ang, Marcelo H. Jr Jr
    Lee, Gim Hee
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2022, 44 (11) : 8139 - 8150
  • [29] Edge-guided generative network with attention for point cloud completion
    Li, Jianliang
    Zhang, Jinming
    Zhang, Xiaohai
    Chen, Ming
    [J]. VISUAL COMPUTER, 2025, 41 (02) : 785 - 798
  • [30] Dual-Graph Attention Convolution Network for 3-D Point Cloud Classification
    Huang, Chang-Qin
    Jiang, Fan
    Huang, Qiong-Hao
    Wang, Xi-Zhe
    Han, Zhong-Mei
    Huang, Wei-Yu
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (04) : 4813 - 4825