FinerPCN: High fidelity point cloud completion network using pointwise convolution

被引:21
|
作者
Chang, Yakun [1 ]
Jung, Cheolkon [1 ]
Xu, Yuanquan [1 ]
机构
[1] Xidian Univ, Sch Elect Engn, Xian 710071, Peoples R China
基金
中国国家自然科学基金;
关键词
3D point cloud; Shape completion; Point analysis; Deep learning; Point completion network; SHAPE;
D O I
10.1016/j.neucom.2021.06.080
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
3D scanners often obtain partial point clouds due to occlusion and limitation of viewing angles. Point cloud completion aims at inferring the full shape of an object from an incomplete point set. Existing deep learning models either do not consider local information or easily degrade the sharp details of the input, thereby losing some existing structures. In this paper, we propose a high fidelity point cloud completion network using pointwise convolution, called FinerPCN. FinerPCN generates complete and fine point clouds in a coarse-to-fine manner. FinerPCN consists of two subnetworks: an encoder-decoder for gener-ating a coarse shape and pointwise convolution for refining its local structure. By repeatedly feeding par-tial input into the second subnetwork, FinerPCN effectively considers local information and alleviates structural blur of input while maintaining global shape. Experimental results show that FinerPCN gener-ates finer detailed completion results than state-of-the-art methods while successfully keeping the shape of the input. (c) 2021 Published by Elsevier B.V.
引用
收藏
页码:266 / 276
页数:11
相关论文
共 50 条
  • [1] A point contextual transformer network for point cloud completion
    Leng, Siyi
    Zhang, Zhenxin
    Zhang, Liqiang
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 249
  • [2] SPCNet: Stepwise Point Cloud Completion Network
    Hu, Fei
    Chen, Honghua
    Lu, Xuequan
    Zhu, Zhe
    Wang, Jun
    Wang, Weiming
    Wang, Fu Lee
    Wei, Mingqiang
    COMPUTER GRAPHICS FORUM, 2022, 41 (07) : 153 - 164
  • [3] FBNet: Feedback Network for Point Cloud Completion
    Yan, Xuejun
    Yan, Hongyu
    Wang, Jingjing
    Du, Hang
    Wu, Zhihong
    Xie, Di
    Pu, Shiliang
    Lu, Li
    COMPUTER VISION - ECCV 2022, PT II, 2022, 13662 : 676 - 693
  • [4] FBNet: Feedback Network for Point Cloud Completion
    Yan, Xuejun
    Yan, Hongyu
    Wang, Jingjing
    Du, Hang
    Wu, Zhihong
    Xie, Di
    Pu, Shiliang
    Lu, Li
    Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2022, 13662 LNCS : 676 - 693
  • [5] FBNet: Feedback Network for Point Cloud Completion
    Yan, Xuejun
    Yan, Hongyu
    Wang, Jingjing
    Du, Hang
    Wu, Zhihong
    Xie, Di
    Pu, Shiliang
    Lu, Li
    arXiv, 2022,
  • [6] Cascaded Refinement Network for Point Cloud Completion
    Wang, Xiaogang
    Ang, Marcelo H., Jr.
    Lee, Gim Hee
    2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2020, : 787 - 796
  • [7] Regional dynamic point cloud completion network
    Zhu, Liping
    Yang, Yixuan
    Liu, Kai
    Wu, Silin
    Wang, Bingyao
    Chang, Xianxiang
    PATTERN RECOGNITION LETTERS, 2024, 186 : 322 - 329
  • [8] ECG: Edge-aware Point Cloud Completion with Graph Convolution
    Pan, Liang
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2020, 5 (03) : 4392 - 4398
  • [9] Point Cloud Completion Using Extrusions
    Kroemer, Oliver
    Ben Amor, Heni
    Ewerton, Marco
    Peters, Jan
    2012 12TH IEEE-RAS INTERNATIONAL CONFERENCE ON HUMANOID ROBOTS (HUMANOIDS), 2012, : 680 - 685
  • [10] FPTNet: Full Point Transformer Network for Point Cloud Completion
    Wang, Chunmao
    Yan, Xuejun
    Wang, Jingjing
    PATTERN RECOGNITION AND COMPUTER VISION, PRCV 2023, PT II, 2024, 14426 : 142 - 154