Effect of lattice mismatch and shell thickness on strain in core@shell nanocrystals

被引:63
作者
Gamler, Jocelyn T. L. [1 ]
Leonardi, Alberto [2 ]
Sang, Xiahan [3 ]
Koczkur, Kallum M. [1 ]
Unocic, Raymond R. [3 ]
Engel, Michael [2 ]
Skrabalak, Sara E. [1 ]
机构
[1] Indiana Univ, Dept Chem, 800 East Kirkwood Ave, Bloomington, IN 47405 USA
[2] Friedrich Alexander Univ Erlangen Nurnberg, IZNF, Inst Multiscale Simulat, Cauerstr 3, D-91058 Erlangen, Germany
[3] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, One Bethel Valley Rd, Oak Ridge, TN 37831 USA
来源
NANOSCALE ADVANCES | 2020年 / 2卷 / 03期
关键词
BY-LAYER DEPOSITION; OXYGEN REDUCTION; FORMIC-ACID; PD; ELECTROCATALYSIS; CATALYSTS; SURFACES; DISPLACEMENT; PALLADIUM; NANOCUBES;
D O I
10.1039/d0na00061b
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Bimetallic nanocrystals with a core@shell architecture are versatile, multifunctional particles. The lattice mismatch between core and shell regions induces strain, affecting the electronic properties of the shell metal, which is important for applications in catalysis. Here, we analyze this strain in core@shell nanocubes as a function of lattice mismatch and shell thickness. Coupling geometric phase analysis from atomic resolution scanning transmission electron microscopy images with molecular dynamics simulations reveals lattice relaxation in the shell within only a few monolayers and an overexpansion in the axial direction. Interestingly, many works report core@shell metal nanocatalysts with optimum performance at greater shell thicknesses. Our findings suggest that not strain alone but secondary factors, such as structural defects or structural changes in operando, may account for observed enhancements in some strain-engineered nanocatalysts; e.g., Rh@Pt nanocubes for formic acid electrooxidation.
引用
收藏
页码:1105 / 1114
页数:10
相关论文
共 45 条
[1]   The Solvent Matters: Kinetic versus Thermodynamic Shape Control in the Polyol Synthesis of Rhodium Nanoparticles [J].
Biacchi, Adam J. ;
Schaak, Raymond E. .
ACS NANO, 2011, 5 (10) :8089-8099
[2]  
Cardarelli F., 2008, Materials Handbook: A Concise Desktop Reference, P1
[3]   Multiscale Computational Design of Core/Shell Nanoparticles for Oxygen Reduction Reaction [J].
Chen, Zhengzheng ;
Zhang, Xu ;
Lu, Gang .
JOURNAL OF PHYSICAL CHEMISTRY C, 2017, 121 (03) :1964-1973
[4]   Effects of strain gradients on strain measurements using geometrical phase analysis in the transmission electron microscope [J].
Chung, Jayhoon ;
Rabenberg, Lew .
ULTRAMICROSCOPY, 2008, 108 (12) :1595-1602
[5]   Calculation of x-ray spectra for nanocrystalline materials [J].
Derlet, PM ;
Van Petegem, S ;
Van Swygenhoven, H .
PHYSICAL REVIEW B, 2005, 71 (02)
[6]   Building Random Alloy Surfaces from Intermetallic Seeds: A General Route to Strain-Engineered Electrocatalysts with High Durability [J].
Gamler, Jocelyn T. L. ;
Ashberry, Hannah M. ;
Sang, Xiahan ;
Unocic, Raymond R. ;
Skrabalak, Sara E. .
ACS APPLIED NANO MATERIALS, 2019, 2 (07) :4538-4546
[7]   Random Alloyed versus Intermetallic Nanoparticles: A Comparison of Electrocatalytic Performance [J].
Gamler, Jocelyn T. L. ;
Ashberry, Hannah M. ;
Skrabalak, Sara E. ;
Koczkur, Kallum M. .
ADVANCED MATERIALS, 2018, 30 (40)
[8]   Error quantification in strain mapping methods [J].
Guerrero, Elisa ;
Galindo, Pedro ;
Yanez, Andres ;
Ben, Teresa ;
Molina, Sergio I. .
MICROSCOPY AND MICROANALYSIS, 2007, 13 (05) :320-328
[9]   Shaping binary metal nanocrystals through epitaxial seeded growth [J].
Habas, Susan E. ;
Lee, Hyunjoo ;
Radmilovic, Velimir ;
Somorjai, Gabor A. ;
Yang, Peidong .
NATURE MATERIALS, 2007, 6 (09) :692-697
[10]   Designing Efficient Catalysts through Bimetallic Architecture: Rh@Pt Nanocubes as a Case Study [J].
Harak, Ethan W. ;
Koczkur, Kallum M. ;
Harak, Dale W. ;
Patton, Paul ;
Skrabalak, Sara E. .
CHEMNANOMAT, 2017, 3 (11) :815-821