KLEIN'S FORMULAS AND ARITHMETIC OF TEICHMULLER MODULAR FORMS

被引:2
作者
Ichikawa, Takashi [1 ]
机构
[1] Saga Univ, Grad Sch Sci & Engn, Dept Math, Saga 8408502, Japan
基金
日本学术振兴会;
关键词
Modular forms; algebraic and arithmetic geometry; THETANULLWERTE; CURVES;
D O I
10.1090/proc/14244
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We apply the arithmetic theory of Teichmuller modular forms to calculating constants in relations, which are connected with Klein's (amazing) formulas, between certain invariants of canonical curves of genus g = 3, 4.
引用
收藏
页码:5105 / 5112
页数:8
相关论文
共 14 条
[1]   THE LOWEST TERM OF THE SCHOTTKY MODULAR FORM [J].
BRINKMANN, B ;
GERRITZEN, L .
MATHEMATISCHE ANNALEN, 1992, 292 (02) :329-335
[2]   EQUATIONS DEFINING THE PERIODS OF TOTALLY DEGENERATE CURVES [J].
GERRITZEN, L .
ISRAEL JOURNAL OF MATHEMATICS, 1992, 77 (1-2) :187-210
[3]   Theta constants and Teichmuller modular forms [J].
Ichikawa, T .
JOURNAL OF NUMBER THEORY, 1996, 61 (02) :409-419
[4]   Generalized Tate curve and integral Teichmuller modular forms [J].
Ichikawa, T .
AMERICAN JOURNAL OF MATHEMATICS, 2000, 122 (06) :1139-1174
[5]  
Igusa J.-I., 1981, SCHOTTKYS INVARIANT, P352, DOI DOI 10.1007/978-3-0348-5452-8_24
[6]  
Igusa Jun-ichi, 1987, P S PURE MATH 2, V49, P101
[7]  
Klein F., 1890, MATH ANN, V36, P1, DOI 10.1007/BF01199432
[8]  
Lachaud G., 2008, NUMBER THEORY APPL, V5, P88
[9]  
Lachaud G, 2010, MATH RES LETT, V17, P323
[10]  
Matone M, 2013, P AM MATH SOC, V141, P2575