Technical considerations in longitudinal multispectral small animal molecular imaging

被引:16
作者
Bouchard, Matthew B. [2 ]
MacLaurin, Sarah A. [1 ]
Dwyer, Peter J. [3 ]
Mansfield, James [3 ]
Levenson, Richard [3 ]
Krucker, Thomas [1 ]
机构
[1] Novartis Inst Biomed Res Inc, Discovery Technol, Cambridge, MA 02139 USA
[2] Northeastern Univ, Dept Phys, Boston, MA 02115 USA
[3] Cambridge Res & Instrumentat Inc CRi, Woburn, MA 01801 USA
关键词
multi-spectral imaging; autofluorescence reduction; spectral definition;
D O I
10.1117/1.2799188
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
In a previous study, we investigated physical methods to reduce whole-body, diet-related autofluorescence interference in several mouse strains through changes in animal diet. Measurements of mice with an in vivo multispectral imaging system over a 21-day period allowed for the quantification of concentration changes in multiple in vivo fluorophores. To be an effective instrument, a multispectral imaging system requires a priori spectral knowledge, the form and importance of which is not necessarily intuitive, particularly when noninvasive in vivo longitudinal imaging studies are performed. Using an optimized spectral library from a previous autofluorescence-reduction study as a model, we investigated two additional spectral definition techniques to illustrate the results of poor spectral definition in a longitudinal fluorescence imaging study. Here we systematically evaluate these results and show how poor spectral definition can lead to physiologically irrelevant results. This study concludes that the proper selection of robust spectra corresponding to each specific fluorescent molecular label of interest is of integral importance to enable effective use of multispectral imaging techniques in longitudinal fluorescence studies. (c) 2007 Society of Photo-Optical Instrumentation Engineers.
引用
收藏
页数:11
相关论文
共 29 条
[1]   Estimating the cost of new drug development: Is it really $802 million? [J].
Adams, CP ;
Brantner, VV .
HEALTH AFFAIRS, 2006, 25 (02) :420-428
[2]  
BEARMAN G, 2003, BIOL IMAGING SPECTRO
[3]   Bioluminescent indicators in living mammals [J].
Contag, PR ;
Olomu, IN ;
Stevenson, DK ;
Contag, CH .
NATURE MEDICINE, 1998, 4 (02) :245-247
[4]   DNA microarrays in drug discovery and development [J].
Debouck, C ;
Goodfellow, PN .
NATURE GENETICS, 1999, 21 (Suppl 1) :48-50
[5]   Multi-spectral imaging and linear unmixing add a whole new dimension to laser scanning fluorescence microscopy [J].
Dickinson, ME ;
Bearman, G ;
Tille, S ;
Lansford, R ;
Fraser, SE .
BIOTECHNIQUES, 2001, 31 (06) :1272-+
[6]   The price of innovation: new estimates of drug development costs [J].
DiMasi, JA ;
Hansen, RW ;
Grabowski, HG .
JOURNAL OF HEALTH ECONOMICS, 2003, 22 (02) :151-185
[7]   Drug discovery: A historical perspective [J].
Drews, J .
SCIENCE, 2000, 287 (5460) :1960-1964
[8]   Non-invasive image acquisition and advanced processing in optical bioimaging [J].
Farkas, DL ;
Du, CW ;
Fisher, GW ;
Lau, C ;
Niu, WH ;
Wachman, ES ;
Levenson, RM .
COMPUTERIZED MEDICAL IMAGING AND GRAPHICS, 1998, 22 (02) :89-102
[9]   In vivo cancer targeting and imaging with semiconductor quantum dots [J].
Gao, XH ;
Cui, YY ;
Levenson, RM ;
Chung, LWK ;
Nie, SM .
NATURE BIOTECHNOLOGY, 2004, 22 (08) :969-976
[10]   OPTICAL COHERENCE TOMOGRAPHY [J].
HUANG, D ;
SWANSON, EA ;
LIN, CP ;
SCHUMAN, JS ;
STINSON, WG ;
CHANG, W ;
HEE, MR ;
FLOTTE, T ;
GREGORY, K ;
PULIAFITO, CA ;
FUJIMOTO, JG .
SCIENCE, 1991, 254 (5035) :1178-1181