Surface and interface interplay on the oxidizing temperature of iron oxide and Au-iron oxide core-shell nanoparticles

被引:6
作者
Sarveena [1 ]
Muraca, Diego [2 ,8 ]
Zelis, P. Mendoza [3 ]
Javed, Y. [4 ]
Ahmad, N. [5 ]
Vargas, J. M. [6 ]
Moscoso-Londono, O. [2 ]
Knobel, M. [2 ,9 ]
Singh, M. [1 ]
Sharma, S. K. [1 ,7 ]
机构
[1] HP Univ, Dept Phys, Shimla 171005, Himachal Prades, India
[2] Univ Estadual Campinas UNICAMP, Inst Fis Gleb Wataghin, BR-13083859 Sao Paulo, SP, Brazil
[3] Univ Nacl La Plata, Dept Fis, Fac Ciencias Exactas, IFLP,CONICET, Cc 67, RA-1900 La Plata, Argentina
[4] Univ Agr Faisalabad, Dept Phys, Faisalabad, Pakistan
[5] Univ Paris Diderot, Lab Mat & Phenomenes Quant, CNRS, UMR 7162, 10 Rue Alice Domon & Leonie Duquet, F-75205 Paris 13, France
[6] UN Cuyo, Inst Balseiro, Ctr Atom Bariloche CNEA, RA-8400 San Carlos De Bariloche, Rio Negro, Argentina
[7] Univ Fed Maranhao, Dept Fis, BR-65085580 Sao Luis, Brazil
[8] Univ Fed Abc, Ctr Ciencias Nat & Humanas, Ave Estados, BR-5001 Santo Andre, Brazil
[9] CNPEM, Lab Nacl Nanotecnol LNNano, Rua Giuseppe Maximo Scolfaro 10000, BR-13083100 Campinas, SP, Brazil
来源
RSC ADVANCES | 2016年 / 6卷 / 74期
基金
巴西圣保罗研究基金会;
关键词
GOLD; MOSSBAUER; HYPERTHERMIA;
D O I
10.1039/c6ra15610j
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
This article presents the effect of oxidation temperature on shape anisotropy, phase purity and growth of core-shell heterostructures and consequently their effect on structure-property relationships. Iron oxide and Au-iron oxide nanocomposites were synthesized by a thermal decomposition method by passing pure oxygen at different temperatures (125-250 degrees C). The prepared nanoparticles were surface functionalized by organic molecules; the presence of the organic canopy prevented both direct particle contact as well as further oxidation, resulting in the stability of the nanoparticles. We have observed a systematic improvement in the core and shell shape through tuning the reaction time as well as the oxidizing temperatures. Spherical and spherical triangular shaped core-shell structures have been obtained at an optimum oxidation temperature of 125 degrees C and 150 degrees C for 30 minutes. However, further increase in the temperature as well as oxidation time results in core-shell structure amendment and results in fully grown core-shell heterostructures. As stability and ageing issues limit the use of nanoparticles in applications, to ensure the stability of the prepared iron oxide nanoparticles we performed XRD analysis after more than a year and they remained intact showing no ageing effect. Specific absorption rate values useful for magnetic fluid hyperthermia were obtained for two samples on the basis of detailed characterization using X-ray diffraction, high-resolution transmission electron microscopy, Mossbauer spectroscopy, and dc-magnetization experiments.
引用
收藏
页码:70394 / 70404
页数:11
相关论文
共 50 条
[31]   Cobalt driven enhancement of nanomagnetism in iron-oxide nanoparticles encapsulated in a synthetic ferritin shell [J].
Skoropata, E. ;
Ceci, P. ;
Kasyutich, O. ;
van Lierop, J. .
JOURNAL OF APPLIED PHYSICS, 2012, 111 (07)
[32]   How interface properties control the equilibrium shape of core-shell Fe-Au and Fe-Ag nanoparticles [J].
Combettes, Segolene ;
Lam, Julien ;
Benzo, Patrizio ;
Ponchet, Anne ;
Casanove, Marie-Jose ;
Calvo, Florent ;
Benoit, Magali .
NANOSCALE, 2020, 12 (35) :18079-18090
[33]   Folic acid conjugated PEG coated gold-iron oxide core-shell nanocomplex as a potential agent for targeted photothermal therapy of cancer [J].
Ghaznavi, Habib ;
Hosseini-Nami, Samira ;
Kamrava, S. Kamran ;
Irajirad, Rasoul ;
Maleki, Shayan ;
Shakeri-Zadeh, Ali ;
Montazerabadi, Alireza .
ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY, 2018, 46 (08) :1594-1604
[34]   Core-shell iron oxide-platinium@metal organic framework/epirubicin nanospheres: Synthesis, characterization and anti-breast cancer activity [J].
Li, Jiadi ;
Zhou, Yuxin ;
Yan, Shuixin ;
Wu, Weizhu ;
Sharifi, Majid .
ARABIAN JOURNAL OF CHEMISTRY, 2023, 16 (11)
[35]   Temperature-Tunable Iron Oxide Nanoparticles for Remote-Controlled Drug Release [J].
Dani, Raj K. ;
Schumann, Canan ;
Taratula, Olena ;
Taratula, Oleh .
AAPS PHARMSCITECH, 2014, 15 (04) :963-972
[36]   Controlled oxidation and surface modification increase heating capacity of magnetic iron oxide nanoparticles [J].
Jiang, Kaiyi ;
Zhang, Qingbo ;
Hinojosa, Daniel Torres ;
Zhang, Linlin ;
Xiao, Zhen ;
Yin, Yu ;
Tong, Sheng ;
Colvin, Vicki L. ;
Bao, Gang .
APPLIED PHYSICS REVIEWS, 2021, 8 (03)
[37]   Unveiling the role of surface, size, shape and defects of iron oxide nanoparticles for theranostic applications [J].
Cotin, Geoffrey ;
Blanco-Andujar, Cristina ;
Perton, Francis ;
Asin, Laura ;
de la Fuente, Jesus M. ;
Reichardt, Wilfried ;
Schaffner, Denise ;
Dinh-Vu Ngyen ;
Mertz, Damien ;
Kiefer, Celine ;
Meyer, Florent ;
Spassov, Simo ;
Ersen, Ovidiu ;
Chatzidakis, Michael ;
Botton, Gianluigi A. ;
Henoumont, Celine ;
Laurent, Sophie ;
Greneche, Jean-Marc ;
Teran, Francisco J. ;
Ortega, Daniel ;
Felder-Flesch, Delphine ;
Begin-Colin, Sylvie .
NANOSCALE, 2021, 13 (34) :14552-14571
[38]   Lignin-Induced Click Synthesis of Au, Ag, Pd, and Iron Oxide Nanoparticles and Their Nanocomposites in Aqueous Bulk and at the Solid-Liquid Interface [J].
Kaur, Rajpreet ;
Ahluwalia, Gurinder Kaur ;
Bakshi, Mandeep Singh .
ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2023, 11 (32) :11819-11833
[39]   Magnetic heating properties and neutron activation of tungsten-oxide coated biocompatible FePt core-shell nanoparticles [J].
Seemann, K. M. ;
Luysberg, M. ;
Revay, Z. ;
Kudejova, P. ;
Sanz, B. ;
Cassinelli, N. ;
Loidl, A. ;
Ilicic, K. ;
Multhoff, G. ;
Schmid, T. E. .
JOURNAL OF CONTROLLED RELEASE, 2015, 197 :131-137
[40]   Cytostatic and Cytotoxic Effects of Hollow-Shell Mesoporous Silica Nanoparticles Containing Magnetic Iron Oxide [J].
Perez-Garnes, Manuel ;
Morales, Victoria ;
Sanz, Raul ;
Garcia-Munoz, Rafael A. .
NANOMATERIALS, 2021, 11 (09)