Uniformly hyperbolic finite-valued SL(2, R)-cocycles

被引:41
作者
Avila, Artur [1 ,2 ]
Bochi, Jairo [3 ]
Yoccoz, Jean-Christophe [4 ]
机构
[1] Inst Math Jussieu, CNRS, UMR 7586, F-75013 Paris, France
[2] IMPA, BR-22460320 Rio De Janeiro, Brazil
[3] PUC Rio, Dept Matemat, BR-22453900 Rio De Janeiro, Brazil
[4] Coll France, F-75005 Paris, France
关键词
Linear cocycles; uniform hyperbolicity; bifurcations; iterated function systems; LYAPUNOV EXPONENTS; DETERMINISTIC PRODUCTS; MATRICES;
D O I
10.4171/CMH/212
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider finite families of SL(2, R) matrices whose products display uniform exponential growth. These form open subsets of (SL(2, R))(N), and we study their components, boundary, and complement. We also consider the more general situation where the allowed products of matrices satisfy a Markovian rule.
引用
收藏
页码:813 / 884
页数:72
相关论文
共 14 条
[1]  
[Anonymous], 2005, ANN MATH STUD
[2]  
ARNOLD L, 1998, MONOGR MATH
[3]   A formula with some applications to the theory of Lyapunov exponents [J].
Avila, A ;
Bochi, J .
ISRAEL JOURNAL OF MATHEMATICS, 2002, 131 (1) :125-137
[4]  
BOCHI J, 2009, MATH Z, V262, P713
[5]   Some characterizations of domination [J].
Bochi, Jairo ;
Gourmelon, Nicolas .
MATHEMATISCHE ZEITSCHRIFT, 2009, 263 (01) :221-231
[6]   Lyapunov exponents with multiplicity 1 for deterministic products of matrices [J].
Bonatti, C ;
Viana, M .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2004, 24 :1295-1330
[7]   Genericity of non-zero Lyapunov exponents for deterministic products of matrices [J].
Bonatti, C ;
Gómez-Mont, X ;
Viana, M .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2003, 20 (04) :579-624
[8]  
Coste M., 1998, ERGEB MATH GRENZGEB, V36
[9]  
Damanik D, 2007, P SYMP PURE MATH, V76, P539
[10]  
Eliasson L.H., 2005, 14 INT C MATH PHYS, P195