Noninvasive Glucose Measurement Using Machine Learning and Neural Network Methods and Correlation with Heart Rate Variability

被引:44
作者
Gusev, Marjan [1 ]
Poposka, Lidija [1 ]
Spasevski, Gjoko [1 ]
Kostoska, Magdalena [1 ]
Koteska, Bojana [1 ]
Simjanoska, Monika [1 ]
Ackovska, Nevena [1 ]
Stojmenski, Aleksandar [1 ]
Tasic, Jurij [2 ]
Trontelj, Janez [3 ]
机构
[1] Ss Cyril & Methodius Univ, Skopje, North Macedonia
[2] Innovat Technol, Sevnica, Slovenia
[3] Univ Ljubljana, Ljubljana, Slovenia
关键词
BLOOD-GLUCOSE; IN-VIVO; DIABETES-MELLITUS; VASCULAR COMPLICATIONS; AUTONOMIC NEUROPATHY; HUMAN SKIN; SPECTROSCOPY; CLASSIFICATION; CONSEQUENCES; TECHNOLOGY;
D O I
10.1155/2020/9628281
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Diabetes is one of today's greatest global problems, and it is only becoming bigger. Constant measuring of blood glucose level is a prerequisite for monitoring glucose blood level and establishing diabetes treatment procedures. The usual way of glucose level measuring is by an invasive procedure that requires finger pricking with the lancet and might become painful and obeying, especially if this becomes a daily routine. In this study, we analyze noninvasive glucose measurement approaches and present several classification dimensions according to different criteria: size, invasiveness, analyzed media, sensing properties, applied method, activation type, response delay, measurement duration, and access to results. We set the focus on using machine learning and neural network methods and correlation with heart rate variability and electrocardiogram, as a new research and development trend.
引用
收藏
页数:13
相关论文
共 124 条
  • [1] Non-invasive glucose sensing in scattering media using OCT, PAS and TOF techniques
    Alarousu, E
    Hast, J
    Kinnunen, M
    Kirillin, M
    Myllylä, R
    Plucinski, J
    Popov, A
    Priezzhev, A
    Prykäri, T
    Saarela, J
    Zuomin, Z
    [J]. SARATOV FALL MEETING 2003: OPTICAL TECHNOLOGIES IN BIOPHYSICS AND MEDICINE V, 2004, 5474 : 33 - 41
  • [2] Multiparameter techniques for non-invasive measurement of blood glucose
    Amaral, Carlos F.
    Brischwein, Martin
    Wolf, Bernhard
    [J]. SENSORS AND ACTUATORS B-CHEMICAL, 2009, 140 (01): : 12 - 16
  • [3] Economic Costs of Diabetes in the U.S. in 2012
    Yang W.
    Dall T.M.
    Halder P.
    Gallo P.
    Kowal S.L.
    Hogan P.F.
    Petersen M.
    [J]. DIABETES CARE, 2013, 36 (04) : 1033 - 1046
  • [4] American Diabetes Association, 2014, DIABETES CARE S1, V37
  • [5] Amir Orna, 2007, J Diabetes Sci Technol, V1, P463
  • [6] [Anonymous], 2014, HDB BIOMEDICAL TELEM
  • [7] [Anonymous], 2000, DIABETES TECHNOL THE, DOI [DOI 10.1089/15209150050025168, 10.1089/15209150050025168]
  • [8] [Anonymous], 2003, INTRO RAMAN SPECTROS, DOI DOI 10.1016/B978-012254105-6/50004-4
  • [9] The economic consequences of diabetes and cardiovascular disease in the United States
    Ariza, Miguel A.
    Vimalananda, Varsha G.
    Rosenzweig, James L.
    [J]. REVIEWS IN ENDOCRINE & METABOLIC DISORDERS, 2010, 11 (01) : 1 - 10
  • [10] Noninvasive glucose sensing
    Arnold, MA
    Small, GW
    [J]. ANALYTICAL CHEMISTRY, 2005, 77 (17) : 5429 - 5439