X-RAY TRANSFORM ON DAMEK-RICCI SPACES

被引:6
|
作者
Rouviere, Francois [1 ]
机构
[1] Univ Nice, Lab JA Dieudonne, F-06108 Nice 2, France
关键词
Damek-Ricci space; hyperbolic space; X-ray transform; totally geodesic submanifold;
D O I
10.3934/ipi.2010.4.713
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Damek-Ricci spaces, also called harmonic NA groups, make up a large class of harmonic Riemannian manifolds including all hyperbolic spaces. We prove here an inversion formula and a support theorem for the X-ray transform, i.e. integration along geodesics, on those spaces. Using suitably chosen totally geodesic submanifolds we reduce the problems to similar questions on low-dimensional hyperbolic spaces.
引用
收藏
页码:713 / 720
页数:8
相关论文
共 50 条
  • [21] The X-ray transform for a generic family of curves and weights
    Frigyik, Bela
    Stefanov, Plamen
    Uhlmann, Gunther
    JOURNAL OF GEOMETRIC ANALYSIS, 2008, 18 (01) : 89 - 108
  • [22] Inversion of the x-ray transform for complexes of lines in Rn
    Denisiuk, Aleksander
    INVERSE PROBLEMS, 2016, 32 (02)
  • [23] The X-Ray Transform on a Generic Family of Smooth Curves
    Yang Zhang
    The Journal of Geometric Analysis, 2023, 33
  • [24] The X-Ray Transform for a Generic Family of Curves and Weights
    Bela Frigyik
    Plamen Stefanov
    Gunther Uhlmann
    Journal of Geometric Analysis, 2008, 18
  • [25] The X-Ray Transform on a Generic Family of Smooth Curves
    Zhang, Yang
    JOURNAL OF GEOMETRIC ANALYSIS, 2023, 33 (06)
  • [27] X-ray transform and 3D Radon transform for ellipsoids and tetrahedra
    Zhu, Jiehua
    Lee, Seung Wook
    Ye, Yangbo
    Zhao, Shiying
    Wang, Ge
    JOURNAL OF X-RAY SCIENCE AND TECHNOLOGY, 2004, 12 (04) : 215 - 229
  • [28] Single Pixel X-ray Transform and Related Inverse Problems
    Lai, Ru-Yu
    Uhlmann, Gunther
    Zhai, Jian
    Zhou, Hanming
    SIAM JOURNAL ON IMAGING SCIENCES, 2022, 15 (04) : 1894 - 1909
  • [29] The X-ray Transform on a General Family of Curves on Finsler Surfaces
    Yernat M. Assylbekov
    Nurlan S. Dairbekov
    The Journal of Geometric Analysis, 2018, 28 : 1428 - 1455
  • [30] CLASSICAL AND MICROLOCAL ANALYSIS OF THE X-RAY TRANSFORM ON ANOSOV MANIFOLDS
    Gouezel, Sebastien
    Lefeuvre, Thibault
    ANALYSIS & PDE, 2021, 14 (01): : 301 - 322