Harnessing the versatile role of OPG in bone oncology: counterbalancing RANKL and TRAIL signaling and beyond

被引:36
作者
Deligiorgi, Maria V. [1 ]
Panayiotidis, Mihalis I. [2 ]
Griniatsos, John [3 ]
Trafalis, Dimitrios T. [1 ]
机构
[1] Natl & Kapodistrian Univ Athens, Fac Med, Clin Pharmacol Unit, Lab Pharmacol, 75 Mikras Asias Str, Athens 11527, Greece
[2] Northumbria Univ, Dept Appl Sci, Ellison Bldg,Room A516, Newcastle Upon Tyne NE1 8ST, Tyne & Wear, England
[3] Natl & Kapodistrian Univ Athens, Laikon Gen Hosp, Fac Med, Dept Surg 1, 17 Agiou Thoma Str, Athens 11527, Greece
关键词
OPG; RANKL; TRAIL; Metastasis; Bone; Osteosarcoma; Multiple myeloma; FACTOR-KAPPA-B; BREAST-CANCER CELLS; REGULATES OSTEOCLAST DIFFERENTIATION; EPITHELIAL-MESENCHYMAL TRANSITION; SKELETAL TUMOR BURDEN; RECEPTOR ACTIVATOR; OSTEOPROTEGERIN OPG; MULTIPLE-MYELOMA; NECROSIS-FACTOR; LIGAND RANKL;
D O I
10.1007/s10585-019-09997-8
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
More than 2 decades ago, the discovery of osteoprotegerin (OPG) as inhibitor of the receptor of activator of nuclear factor Kb (RANK) ligand (RANKL) revolutionized our understanding of bone biology and oncology. Besides acting as decoy receptor for RANKL, OPG acts as decoy receptor for tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). OPG, RANKL, and TRAIL are ubiquitously expressed, stimulating per se pivotal signaling cascades implicated in cancer. In the context of cancer cell-bone cell interactions, cancer cells skew the OPG/RANKL/RANK (RANKL cognate receptor) balance towards bone destruction and tumor growth through favoring the RANKL/RANK interface, circumventing OPG. Numerous preclinical and clinical studies demonstrate the dual role of OPG in cancer: antitumor and tumor-promoting. OPG potentially conveys an antitumor signal through inhibiting the tumor-promoting RANKL signaling-both the osteoclast-dependent and the osteoclast-independent-and the tumor-promoting TRAIL signaling. On the other hand, the presumed tumor-promoting functions of OPG are: (i) abrogation of TRAIL-induced apoptosis of cancer cells; (ii) abrogation of RANKL-induced antitumor immunity; and (iii) stimulation of oncogenic and prometastatic signaling cascades downstream of the interaction of OPG with diverse proteins. The present review dissects the role of OPG in bone oncology. It presents the available preclinical and clinical data sustaining the dual role of OPG in cancer and focuses on the imbalanced RANKL/RANK/OPG interplay in the landmark "vicious cycle" of skeletal metastatic disease, osteosarcoma, and multiple myeloma. Finally, current challenges and future perspectives in exploiting OPG signaling in bone oncology therapeutics are discussed.
引用
收藏
页码:13 / 30
页数:18
相关论文
共 130 条
[21]   Arming a replicating adenovirus with osteoprotegerin reduces the tumor burden in a murine model of osteolytic bone metastases of breast cancer [J].
Cody, J. J. ;
Rivera, A. A. ;
Lyons, G. R. ;
Yang, S. W. ;
Wang, M. ;
Sarver, D. B. ;
Wang, D. ;
Selander, K. S. ;
Kuo, H-C ;
Meleth, S. ;
Feng, X. ;
Siegall, G. P. ;
Douglas, J. T. .
CANCER GENE THERAPY, 2010, 17 (12) :893-905
[22]   Clinical features of metastatic bone disease and risk of skeletal morbidity [J].
Coleman, Robert E. .
CLINICAL CANCER RESEARCH, 2006, 12 (20) :6243S-6249S
[23]   Global Burden of Multiple Myeloma ASystematic Analysis for the Global Burden of Disease Study 2016 [J].
Cowan, Andrew J. ;
Allen, Christine ;
Barac, Aleksandra ;
Basaleem, Huda ;
Bensenor, Isabela ;
Curado, Maria Paula ;
Foreman, Kyle ;
Gupta, Rahul ;
Harvey, James ;
Hosgood, H. Dean ;
Jakovljevic, Mihajlo ;
Khader, Yousef ;
Linn, Shai ;
Lad, Deepesh ;
Mantovani, Lorenzo ;
Vuong Minh Nong ;
Mokdad, Ali ;
Naghavi, Mohsen ;
Postma, Maarten ;
Roshandel, Gholamreza ;
Shackelford, Katya ;
Sisay, Mekonnen ;
Cuong Tat Nguyen ;
Tung Thanh Tran ;
Bach Tran Xuan ;
Ukwaja, Kingsley Nnanna ;
Vollset, Stein Emil ;
Weiderpass, Elisabete ;
Libby, Edward N. ;
Fitzmaurice, Christina .
JAMA ONCOLOGY, 2018, 4 (09) :1221-1227
[24]   Osteoprotegerin (OPG) - a potential new role in the regulation of endothelial cell phenotype and tumour angiogenesis? [J].
Cross, SS ;
Yang, ZY ;
Brown, NJ ;
Balasubramanian, SP ;
Evans, CA ;
Woodward, JK ;
Neville-Webbe, HL ;
Lippitt, JM ;
Reed, MWR ;
Coleman, RE ;
Holen, I .
INTERNATIONAL JOURNAL OF CANCER, 2006, 118 (08) :1901-1908
[25]   The Impact of Immune System in Regulating Bone Metastasis Formation by Osteotropic Tumors [J].
D'Amico, Lucia ;
Roato, Ilaria .
JOURNAL OF IMMUNOLOGY RESEARCH, 2015, 2015
[26]   Review of therapeutic strategies for osteosarcoma, chondrosarcoma, and Ewing's sarcoma [J].
Dai, Xing ;
Ma, Wei ;
He, Xijing ;
Jha, Rajiv Kumar .
MEDICAL SCIENCE MONITOR, 2011, 17 (08) :RA177-RA190
[27]   The anti-tumor effect of RANKL inhibition in malignant solid tumors - A systematic review [J].
de Groot, A. F. ;
Appelman-Dijkstra, N. M. ;
van der Burg, S. H. ;
Kroep, J. R. .
CANCER TREATMENT REVIEWS, 2018, 62 :18-28
[28]   Molecular Pathways: Osteoclast-Dependent and Osteoclast-Independent Roles of the RANKL/RANK/OPG Pathway in Tumorigenesis and Metastasis [J].
Dougall, William C. .
CLINICAL CANCER RESEARCH, 2012, 18 (02) :326-335
[29]   Osteoprotegerin is a receptor for the cytotoxic ligand TRAIL [J].
Emery, JG ;
McDonnell, P ;
Burke, MB ;
Deen, KC ;
Lyn, S ;
Silverman, C ;
Dul, E ;
Appelbaum, ER ;
Eichman, C ;
DiPrinzio, R ;
Dodds, RA ;
James, IE ;
Rosenberg, M ;
Lee, JC ;
Young, PR .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (23) :14363-14367
[30]   Targeting tumor-stromal interactions in bone metastasis [J].
Esposito, Mark ;
Kang, Yibin .
PHARMACOLOGY & THERAPEUTICS, 2014, 141 (02) :222-233