The effects of cell type and culture condition on the procoagulant activity of human mesenchymal stromal cell-derived extracellular vesicles

被引:40
|
作者
Chance, Tiffani C. [1 ,2 ]
Rathbone, Christopher R. [2 ]
Kamucheka, Robin M. [1 ]
Peltier, Grantham C. [1 ]
Cap, Andrew P. [1 ]
Bynum, James A. [1 ]
机构
[1] US Army Inst Surg Res, Blood & Coagulat Res Task Area, Ft Sam Houston, TX USA
[2] Univ Texas San Antonio, Dept Biomed Engn, San Antonio, TX USA
关键词
Mesenchymal stromal cells; coagulation; extracellular vesicles; exosomes; STEM-CELLS; EXOSOMES; MICROVESICLES;
D O I
10.1097/TA.0000000000002225
中图分类号
R4 [临床医学];
学科分类号
1002 ; 100602 ;
摘要
BACKGROUND Mesenchymal stromal cell (MSC)-derived extracellular vesicles (EVs) have great potential as a cell-free therapy in wound healing applications. Because EV populations are not equivalent, rigorous characterization is needed before clinical use. Although there has been much focus on their RNA composition and regenerative capabilities, relatively less is known regarding the effects of MSC cell type (adipose tissue [Ad-MSCs] or bone marrow [BM-MSCs]) and culture condition (monolayer or spheroid) on MSC-EV performance, including characteristics related to their ability to promote coagulation, which could determine EV safety if administered intravenously. METHODS The successful isolation of EVs derived from Ad-MSCs or BM-MSCs cultured in either monolayer or spheroid cultures was confirmed by NanoSight (particle size distribution) and Western blot (surface marker expression). Extracellular vesicle surface expression of procoagulant molecules (tissue factor and phosphatidylserine) was evaluated by flow cytometry. Extracellular vesicle thrombogenicity was tested using calibrated thrombogram, and clotting parameters were assessed using thromboelastography and a flow-based adhesion model simulating blood flow over a collagen-expressing surface. RESULTS The MSC cell type and culture condition did not impact EV size distribution. Extracellular vesicles from all groups expressed phosphatidylserine and tissue factor on their surfaces were functionally thrombogenic and tended to increase clotting rates compared to the negative control of serum-free media without EVs. On average, EVs did not form significantly larger or stronger clots than the negative control, regardless of cell source or culture condition. Additionally, EVs interfered with platelet adhesion in an in vitro flow-based assay. CONCLUSION Adipose-derived EVs were more thrombogenic and expressed higher amounts of phosphatidylserine. Our findings suggest that, like intact MSCs, source variability among EVs is an important factor when considering EVs for potential therapeutic purposes. LEVEL OF EVIDENCE Therapeutic care management, level II.
引用
收藏
页码:S74 / S82
页数:9
相关论文
共 50 条
  • [21] Immunomodulatory potential of mesenchymal stromal cell-derived extracellular vesicles in chondrocyte inflammation
    Ossendorff, Robert
    Grad, Sibylle
    Tertel, Tobias
    Wirtz, Dieter C.
    Giebel, Bernd
    Boerger, Verena
    Schildberg, Frank A.
    FRONTIERS IN IMMUNOLOGY, 2023, 14
  • [22] Functional characterization of mesenchymal stromal cell-derived extracellular vesicles in myelodysplastic syndromes
    Wobus, M.
    Mies, A.
    Oelschlaegel, U.
    Kahlert, C.
    Stoelzel, F.
    Bornhaeuser, M.
    Platzbecker, U.
    ONCOLOGY RESEARCH AND TREATMENT, 2018, 41 : 92 - 92
  • [23] Challenges of manufacturing mesenchymal stromal cell-derived extracellular vesicles in regenerative medicine
    Wiest, Elani F.
    Zubair, Abba C.
    CYTOTHERAPY, 2020, 22 (11) : 606 - 612
  • [24] Mesenchymal Stromal Cell-Derived Extracellular Vesicles - Silver Linings for Cartilage Regeneration?
    De Luna, Andrea
    Otahal, Alexander
    Nehrer, Stefan
    FRONTIERS IN CELL AND DEVELOPMENTAL BIOLOGY, 2020, 8
  • [25] Mesenchymal stromal cell-derived extracellular vesicles: novel approach in hematopoietic stem cell transplantation
    Davod Pashoutan Sarvar
    Hosein Effatpanah
    Parvin Akbarzadehlaleh
    Karim Shamsasenjan
    Stem Cell Research & Therapy, 13
  • [26] Mesenchymal stromal cell-derived extracellular vesicles: novel approach in hematopoietic stem cell transplantation
    Sarvar, Davod Pashoutan
    Effatpanah, Hosein
    Akbarzadehlaleh, Parvin
    Shamsasenjan, Karim
    STEM CELL RESEARCH & THERAPY, 2022, 13 (01)
  • [27] New therapeutic approaches in pediatric diseases: Mesenchymal stromal cell and mesenchymal stromal cell-derived extracellular vesicles as new drugs
    Valsecchi, Chiara
    Croce, Stefania
    Lenta, Elisa
    Acquafredda, Gloria
    Comoli, Patrizia
    Avanzini, Maria Antonietta
    PHARMACOLOGICAL RESEARCH, 2023, 192
  • [28] Cellular In Vitro Responses Induced by Human Mesenchymal Stem/Stromal Cell-Derived Extracellular Vesicles Obtained from Suspension Culture
    Souza, Ingrid L. M.
    Suzukawa, Andreia A.
    Josino, Raphaella
    Marcon, Bruna H.
    Robert, Anny W.
    Shigunov, Patricia
    Correa, Alejandro
    Stimamiglio, Marco A.
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2024, 25 (14)
  • [29] Requirements for human mesenchymal stem cell-derived small extracellular vesicles
    Li, Qing
    Li, Bo
    Ye, Teng
    Xu, Wenrong
    Yin, Hang
    Deng, Zhifeng
    Li, Haiyan
    Yan, Xiaomei
    Hao, Xiaoke
    Li, Li
    Tao, Zhihua
    Liu, Bicheng
    Chen, Zhengsheng
    Luo, Lei
    Qian, Hui
    Fu, Qing-Ling
    Wang, Qian
    Zheng, Lei
    Wang, Yang
    INTERDISCIPLINARY MEDICINE, 2023, 1 (01):
  • [30] Effects of Mesenchymal Stromal Cell-Derived Extracellular Vesicles in Lung Diseases: Current Status and Future Perspectives
    Guo, Haiyan
    Su, Yue
    Deng, Fang
    STEM CELL REVIEWS AND REPORTS, 2021, 17 (02) : 440 - 458